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Measuring Area By Slicing
We first defined the integral in terms of the area bounded by a single function and the x-axis.
Not surprisingly, integrals can also be used to measure areas of more general planar regions,
bounded by two, three, and more graphs. Not surprisingly the basic idea comes back to
approximations with rectangles.

Example
Approximate the area trapped between the curves y = sin x and y = cos x from x = −3π/4 and
x = π/4.

Remarks:
• The curves intersect at x = −3π/4 and x = π/4. The height of each rectangle is

determined at its left edge, x = xi; the height is cos(xi)− sin(xi).

• The total area of ten rectangles is L10, the left sum with ten equal subdivisions for the
function cos x− sin x on the interval [−3π/4, π/4].

• The area between the curves is the integral∫ π/4

−3π/4
(cos x− sin x) dx = 2

√
2.
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The Area in Question
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What We are Really Calculating
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Finding Areas by Vertical Slices

Example

Find the area bounded by the graphs of y = 2x/3, y = x2 − 2x− 1 and the y-axis.

Solution: We must start by finding the intersection between the graphs y = 2/3x and
y = x2 − 2x− 1. This occurs at x = 3. We integrate the top and bottom curves and obtain

Area =

∫ 3

0

(
2
3

x− (x2 − 2x− 1)

)
dx = 6.

Slide 5/31 — Dr. John Ehrke — Lecture 6 — Fall 2012



A B I L E N E C H R I S T I A N U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

A Slightly Harder Example

Example

Find the area of the region enclosed by x = y2 and y = x− 2.

Solution: We start by finding where the curves intersect. This yields

y2 = y + 2 =⇒ y2 − y− 2 = 0 =⇒ (y + 1)(y− 2) = 0

from which we obtain y = −1, y = 2. Substituting into either equation we see that the
corresponding x-values are x = 1 and x = 4, so the intersection points are (1,−1) and (4, 2).

Vertical Slices: We split the region into two parts A1, A2 and find the area of each part
separately. We have f (x) =

√
x, g(x) = −

√
x, a = 0, b = 1 and so

A1 =

∫ 1

0

√
x− (−

√
x) dx = 2

∫ 1

0

√
x dx =

4
3
.

For A2 we have f (x) =
√

x, g(x) = x− 2, a = 1, b = 4, so

A2 =

∫ 4

1

√
x− (x− 2) dx =

19
6
.

Horizontal Slices: If we integrate horizontally we do not have to split the region and
r(y) = y + 2 and l(y) = y2 so the area A for the region is given by

A =

∫ 2

−1
r(y)− l(y) dx =

∫ 2

−1
y + 2− y2 dy =

27
6
.
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Finding Areas by Horizontal Slices

Example

Find the area bounded by the graphs of y = x− 2, x = 1− y2, and the lines y = ±1.

Solution: Because this region does not have consistent rectangles if we slice vertically, it
makes sense to write the bounding functions in terms of y and integrate across the y-axis. This
means

Area =

∫ 1

−1
(y + 2− (1− y2)) dy = 8/3.
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Parametric Curves
We have explored how to find areas by taking vertical slices and horizontal slices (rectangular
thinking) and by taking circular wedges (polar thinking). In this lecture we will extend these
techniques to deal with another variable change that leads to parametric equations. The basic
idea behind parametric curves is that we write the x, y coordinates in terms of a parameter t
(usually time). In symbols,

x = x(t)
y = y(t)

The basic idea behind the formation of a parametric curve is that of a directed trajectory.
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Parameterizing a Line Segment

Example
Find a parametrization for the line segment with endpoints (−2, 1) and (3, 5).

Solution: Using (−2, 1) as the starting point we create the parametric equations

x = −2 + at, y = 1 + bt.

We determine a and b so that the line will go through (3, 5) when t = 1. Solving each
equation for t and equating the results we obtain

x + 2
a

=
y− 1

b
.

This leads to

3 = −2 + a =⇒ a = 5

5 = 1 + b =⇒ b = 4

Therefore,
x = −2 + 5t, y = 1 + 4t, 0 ≤ t ≤ 1

is a parametrization of the line segment with initial point (−2, 1) and terminal point
(3, 5).
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General Form of the Parametrization of a Line

Parametrization of a Line Segment

A line with starting point (α, β) and terminal point (γ, δ) can be parameterized by the
equations

x = γt + α(1− t), δt + β(1− t), 0 ≤ t ≤ 1.

Solution: If we look at the previous example with starting point (α, β) = (−2, 1) and
terminal point (γ, δ) = (3, 5) we obtain the parametrization

x = 3t− 2(1− t), y = 5t + 1(1− t), 0 ≤ t ≤ 1.

After collecting terms these equations agree with our previous answer.
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Standard Parameterizations

Circle
A parametrization of the circle x2 + y2 = a2 is given by

x = a cos t, y = a sin t, 0 ≤ t ≤ 2π.

Ellipse

A parametrization of the ellipse
x2

a2
+

y2

b2
= 1 is given by

x = a cos t, b sin t, 0 ≤ t ≤ 2π

Standard Parametrization
Every function y = f (x) admits a standard parametrization given by

x = t, y = f (t)

where the domain of t is determined by the domain of f (x). Similarly, the parametrization of the
inverse of f (x) is given by

x = f (t), y = t
where the domain of t is determined by the range of f (x).
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Shapes Created Via Rolling Wheels
Many fascinating curves are generated by points on rolling wheels. The path of light
on the rim of a rolling wheel is a cycloid, which has parametric equations

x = a(t− sin t), y = a(1− cos t), t ≥ 0

where a > 0.

Another equally interesting curve is the one generated by a circle with radius a/4 that
rolls along the inside of a larger circle with radius a. The curve created in this case is
called an astroid or hypocycloid, and its parametric equations are

x = a cos3 t, y = a sin3 t, 0 ≤ t ≤ 2π.

Example
Find the rectangular forms of each of these parametric equations and sketch their
graphs. Label the graphs with the parameter t.
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Graphs of the Cycloid and Asteroid

Rectangular Equations

Cycloid: x = a cos−1 (1− y
a

)
−
√

2ay− y2

Asteroid: x2/3 + y2/3 = 1
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Calculating Areas Enclosed by Parametric Curves
As we are now no doubt aware of the area under a curve y = h(x) from a to b is
given by the integral

Area =

∫ b

a
h(x) dx.

We think of h(x) as a height function, but if this function is defined by a parametric
equation x = f (t) and y = g(t), then a simple substitution allows us to calculate area
in the following way:

Area =

∫ b

a
y dx =

∫
g(t)f ′(t) dt

where the limits of integration must be determined by inspection.
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Area Enclosed by the Hypocycloid

Example

Find the area enclosed by the hypocycloid, x2/3 + y2/3 = 1. Recall the
parametrization of this curve is given by

x = a cos3 t, y = a sin3 t, 0 ≤ t ≤ 2π.

Solution: Applying the formula from the previous slide we calculate the area
enclosed in one quadrant and use symmetry to find the full answer. The area
enclosed in quadrant I is given by

Area =

∫ a

0
y dx =

∫ π/2

0
(a sin3 t)(3a cos2 t · − sin t) dt =

3
32
πa2.

Multiplying the result by 4 for the full area gives

Area of a Hypocycloid =
3
8
πa2.
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A Slightly Harder Example

Example

Find the area bounded by the loop of the curve with parametric equation x = t2,
y = t3 − 3t.

Solution: The hardest part of finding areas involving parametric equations is
determining the range over which t runs. We usually must resort to graphing to help
as shown in the screen shots below.
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Solution
From the equation it is clear that when t = 0, (x, y) = (0, 0). This implies the graph
begins at the origin, but to form the loop we need to know the values of t that result
in the intersection. This would clearly be a value of t where y = 0 based on the
graph, so we solve

t3 − 3t = 0 =⇒ t(t2 − 3) = 0 =⇒ t = ±
√

3.

We can recover the area enclosed by finding the top (or bottom half area) and using
symmetry. The area enclosed by the curve is given by

Area = 2
∫ 3

0
y dx = 2

∫ −√3

0
(t3 − 3t)(2t) dt =

24
5

√
3 ≈ 8.31.
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National Curve Bank
The National Curve Bank is a website supported by the National Science
Foundation (NSF) and the Beckman foundation and is run by California State
University (LA). The website is located at
http://curvebank.calstatela.edu/home/home.htm and is home to a wide
array of animations and graphs of curves arising in all sorts of mathematical
applications.
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Polar Coordinates
One of the most important coordinate systems we work with in mathematics is the polar
coordinate system. Polar coordinates are inspired by our work with trigonometric functions and
work best when trying to analyze annular regions (or regions involving circles or ellipses).

The basic idea is that given our familiarity with sin θ and cos θ we are able to completely
redefine the way we think of plotting points in the plane. Our regular coordinate system is
called a rectangular coordinate system. In this lecture, we will introduce the polar coordinate
system and explore its application to finding areas of annular regions.

r = distance to the origin x = r cos θ r = ±
√

x2 − y2

θ = standard angle rotation y = r sin θ θ = tan−1 ( y
x

)
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Plotting Points in Polar Coordinates
Consider plotting the point (x, y) = (1,−1) in polar coordinates. What are the
coordinates which describe this exactly?

The problem with the term exactly implies there is only one answer, and when it
comes to polar coordinates that is simply just not the case. In this small example,
the point (1,−1) in rectangular coordinates can be described by

(r, θ) = (−
√

2, 3π/4), (
√

2, 7π/4), (
√

2,−π/4)

just to name a few.

So how do we handle this ambiguity?

The typical convention for polar coordinates is that the variable r and θ obey the
following:

1 0 ≤ r <∞
2 −π ≤ θ ≤ π
3 0 ≤ θ ≤ 2π

As you can see there is not even a consensus on the range for θ, but we’ll generally
use 0 ≤ θ ≤ 2π unless otherwise indicated.
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Coordinate Comparisons

Figure: Rectangular Coordinate System Figure: Polar Coordinate System
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From Polar to Rectangular and Back Again
Consider the function in the polar coordinate system determined by the graph below.
What is the equation in polar coordinates? In rectangular coordinates?
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Solution continued...
Looking at the graph on the previous slide we should notice this as a circle of radius
a centered at (a, 0). In rectangular coordinates, this gives

(x− a)2 + y2 = a2.

We now look to convert this expression to polar coordinates. Notice that if we
expand the left hand side we obtain

x2 − 2ax + a2 + y2 = a2.

This means
x2 + y2 − 2ax = 0 =⇒ r2 − 2a(r cos θ) = 0.

Finally, we obtain the expression in polar coordinates, r = r(θ), given by

r(θ) = 2a cos θ.

You should note that when θ = 0 we are at the point (2a, 0) and when θ = ±π/2 we
are at the point (0, 0). This implies the angle θ takes on the range θ ∈ [−π/2, π/2] if
we want the angle drawn out to use positive radii the whole way through which was
one of our conventions stated earlier.
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Calculating Area Using Polar Coordinates
In order to get a feel for how to calculate areas using polar coordinates we consider the basic
problem of finding the area of a circle of radius a. The basic approach involves summing
wedges as opposed to rectangles like we did with Riemann sums.

It is pretty easy to find the area of this pie wedge as
it is simply a fraction of the total area of the circle
which we know to be A = πa2. Looking at ∆A, we
have

∆A =
∆θ

2π
· πa2.

This means that the formula for the area of these
wedges is given by

∆A =
1
2

a2∆θ.

This is also the formula for the area of a sector of a
circle.
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The Variable Pie
As we know, not all regions in the plane are nice circles like this, but we’ve established a basic
manner of thought here, that can actually pay dividends when applied to a more general
situation. Consider the quadrant of a pie with variable boundary given by r = r(θ). How do we
find the area of this region?

From our previous experience with the circle, we
know that in terms of r(θ), the area ∆A of the
adjusted wedge is

∆A =
1
2

r2∆θ.

Summing over all such wedges and letting ∆θ → 0,
we obtain the integral formula for the total area over
the annular region θ1 ≤ θ ≤ θ2,∫ θ2

θ1

1
2

r(θ)2 dθ.
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An Example

Example
Find the area of the circle centered at (a, 0) of radius a given by r(θ) = 2a cos θ.

Solution: It is important to note that this is the same figure considered earlier in this lecture. In
this case, the variable radius is given by r(θ) = 2a cos θ, so applying our polar area formula, we
have

Area =

∫ π/2

−π/2

1
2

(2a cos θ)2 dθ

= 2a2
∫ π/2

−π/2
cos2 θ dθ

= 2a2
∫ π/2

−π/2

1 + cos(2θ)
2

dθ

= a2
(
θ +

1
2

sin(2θ)
)∣∣∣∣π/2

−π/2

= πa2

Which is exactly the area we expected from basic geometry.
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An Example With Symmetries

Example
Find the entire area enclosed by the curve r = 2 sin 3θ.

Solution: We will begin by drawing the curve (using the polar graph on the next slide and
plotting points). In fact, in all area problems in polar coordinates a sketch should be made. The
curve is called a rose curve. A single petal is described completely as θ goes from 0→ π/3.
This means we can use symmetries and find the area of this loop only. We have

A
3

=
1
2

∫ π/3

0
(2 sin 3θ)2 dθ =⇒ A = 6

∫ π/3

0

1− cos 6θ
2

dθ.

Integration yields,

A = 6
[
θ

2
−

1
12

sin 6θ
]π/3

0
= π.
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Intersecting Polar Curves

Example
Find the area inside the circle r = 5 cos θ and outside the curve r = 2 + cos θ.

Solution: The two curves intersect when

5 cos θ = 2 + cos θ ⇐⇒ cos θ = 1/2.

This means θ = ±π/3. The area inside 5 cos θ and outside 2 + cos θ is given by

A =
1
2

∫ π/3

−π/3
(5 cos θ)2 dθ − 1

2

∫ π/3

−π/3
(2 + cos θ)2 dθ.

We observe that both curves are symmetric to the x-axis and the integrals may be
combined since the limits of integration are the same. This gives,

A =

∫ π/3

0
[25 cos2 θ − (4 + 4 cos θ + cos2 θ)] dθ

= [8θ + 6 sin 2θ − 4 sin θ]π/3
0 =

8π
3

+
√

3.
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A Harder Example

Example
Find the area that lies inside the larger loop and outside the smaller loop of the
limacon, r = 1

2 + cos θ.
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Solution...
The trick to finding the solution in this case is figuring out the value of θ for which
certain parts are drawn and what the radius looks like for those parts. We use the
symmetry across the x-axis by finding only the area trapped in the top half and then
multiplying by 2. For 0 ≤ θ ≤ 2π/3, the top lobe is drawn out. We need to then
subtract the area contained in the smaller loop which is drawn out for π ≤ θ ≤ 4π/3.
All together (remembering to multiply by 2) we have

A = 2

[∫ 2π/3

0

1
2

r2dθ −
∫ 4π/3

π

1
2

r2dθ

]

=

∫ 2π/3

0

(
1
2
+ cos θ

)2

dθ −
∫ 4π/3

π

(
1
2
+ cos θ

)2

dθ

≈ 2.08443
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