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A B I L E N E C H R I S T I A N U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Eliminating Powers From Trig Functions
Initially this lecture will not contain any new integral techniques. Our goal
is to remind you of some important identities from trigonometry and
reinforce the importance of substitutions and integration by parts we have
already covered. It turns out that every anti derivative of the form∫

cos3 x dx,
∫

sec3 x tan3 x dx, and
∫

cos2 x sin3 x tan2 x dx

i.e, any product of integer powers of the six trigonometric functions can be
solved in elementary form. The general technique involves applying
reduction formulae and trig identities to reduce the powers. Some basic
trigonometric identities you should recall:

• (Pythagorean Identity) sin2 θ + cos2 θ = 1

• (Cosine Double Angle Identity) cos(2θ) = cos2 θ − sin2 θ

• (Sine Double Angle Identity) sin(2θ) = 2 sin θ cos θ.
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New Formulas from Old
It turns out the previous three formulas are really the only ones we need as we can
obtain all others needed from these three. In particular, we want to obtain a formula
that allows us to reduce the powers of sinn θ and cosn θ for n ≥ 2. We immediately
turn to the cosine double angle identity, and rewrite it using the Pythagorean
identity as

cos(2θ) = cos2 θ − sin2 θ = cos2 θ − (1− cos2 θ).

Solving this expression for cos2 θ gives what is known as the half-angle identity,

cos2 θ =
1 + cos(2θ)

2
.

In similar fashion we can obtain the half-angle identity for sine,

sin2 θ =
1− cos(2θ)

2
.

• (Cosine Half Angle Identity) cos2 θ =
1 + cos(2θ)

2

• (Sine Half Angle Identity) sin2 θ =
1− cos(2θ)

2
.
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The Basic Examples
We will start by considering the most important class of integrals for this
topic–those of the form∫

sinn x cosm x dx, n,m = 0, 1, 2, . . . .

These integrals show up in countless areas in mathematics including
Fourier analysis.

The easiest case is when at least one of the exponents m or n is odd. We will
begin with an example in this case.

Example
Evaluate

∫
sinn x cos x dx for any integer n ≥ 0.

Solution: We use the substitution u = sin x, in this case, du = cos x dx, and
so we have∫

sinn x cos x dx =

∫
un dx =

un+1

n + 1
+ c =

(sin x)n+1

n + 1
+ c.
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A Slightly Different Case

Example

Evaluate
∫

sin3 x cos2 x dx.

Solution: We are still in the easy case since m = 3 is odd. We use
sin2 x = 1− cos2 x to eliminate the larger powers involved. So we have,∫

sin3 x cos2 x dx =

∫
(1− cos2 x) sin x cos2 x dx =

∫
(cos2 x− cos4 x) sin x dx.

At this point we make the substitution u = cos x and du = − sin x dx. Under
this substitution we have∫

(u2 − u4) (−du) = −u3

3
+

u5

5
+ c.

Back substituting, we have∫
sin3 x cos2 x dx = −cos3 x

3
+

cos5 x
5

+ c.
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No Cosine In Sight

Example

Evaluate
∫

sin3 x dx.

Solution: We proceed as before and use sin2 x = 1− cos2 x, to obtain

∫
(1− cos2 x) sin x dx =

∫
(1− u2) (−du)

= −u +
u3

3
+ c

= − cos x +
cos3 x

3
+ c
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The Harder Case
The harder case is when both of the powers are even. In this case you
should try and apply the half-angle formulas.

Example
Evaluate

∫
cos2 x dx.

Solution: Applying the half-angle formula straight away gives∫
cos2 x dx =

∫
1 + cos(2x)

2
dx =

x
2
+

sin(2x)
2 · 2

+ c.
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Another Harder Case

Example
Evaluate

∫
sin2 x cos2 x dx.

Solution: We do some scratch work off to the side to deal with the integrand. We
have

sin2 x cos2 x =

(
1− cos(2x)

2

)(
1 + cos(2x)

2

)
.

This is simply a difference of squares, so we have(
1− cos(2x)

2

)(
1 + cos(2x)

2

)
=

1− cos2(2x)
4

.

We are still not done, but in light of the previous example, we use the half angle
formula again and have

1− cos2(2x)
4

=
1
4
− 1 + cos(4x)

4 · 2 =
1
8
− cos(4x)

8
.

From here the resulting integrand can easily be integrated.
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An Alternative Method
Knowing the double angle identities can also be of use in this case.

Example
Evaluate

∫
sin2 x cos2 x dx using a double angle identity.

Solution: We recognize sin2 x cos2 x = (sin x cos x)2. In this case we apply the
double angle identity to get

(sin x cos x)2 =

(
sin(2x)

2

)2

=
sin2(2x)

4
.

We are still in the hard case at this point, but we can now apply the half-angle
identity to obtain

sin2(2x)
4

=
1− cos(4x)

8
.

The integration at this point gives∫
sin2 x cos2 x dx =

∫
1− cos(4x)

8
dx =

x
8
− sin(4x)

32
+ C.
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A Word on Secant and Tangent
Recall the derivatives of tangent and secant are given by

d
dx

sec x = sec x tan x and
d

dx
tan x = sec2 x.

These immediately give the following integral formulas:∫
sec x tan x dx = sec x and

∫
sec2x dx = tan x.

What about the integrals of just tan x and sec x?

Example
Evaluate the integrals

∫
tan x dx and

∫
sec x dx.

Solution: First for tan x we have under the substitution u = cos x,∫
tan x dx =

∫
sin x
cos x

dx =

∫
−du

u
= − ln | cos x | +c.
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Solution continued...
Secondly, for the sec x we think about

d
dx

(sec x + tan x) = sec x tan x + sec2 x = sec x(sec x + tan x).

If we let u = sec x + tan x, this gives u′ = u · sec x, or

sec x =
u′

u
=

d
dx

ln(u) =
d
dx

ln(sec x + tan x).

Integrating both sides of this expression, we have∫
sec x dx = ln(sec x + tan x).

Similar techniques show that∫
csc x dx = − ln | csc x + cot x | +c

and ∫
cot x dx = ln | sin x | +c.
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Motivation for Trigonometric Substitutions
For the remainder of this lecture, we will consider several examples where making a
trigonometric substitution can help simplify the process of integration. To motivate
this method, consider the figure below.

What is the area of the green shaded region?
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A New Integral
In this example, we would like to determine the area of the green shaded
region. How might we go about doing this? Our first attempt might involve
breaking the region up into vertical strips and integrating according to

Area =

∫ a

0
y dx

but this is potentially complicated since the function y(x) is not a constant
function. Rather than breaking the region up into vertical strips we might
try horizontal strips. In this case our integral becomes,

Area =

∫ b

0
x dy =

∫ b

0

√
a2 − y2 dy.

The resulting integral is not one we’ve encountered so far, and based on our
derivation of the integral and its associated area we might try a
trigonometric approach.
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Making the Trigonometric Substitution I

Example

Find the area of the shaded region by evaluating the integral
∫ b

0

√
a2 − y2 dy.

Solution: The picture suggests the substitution y = a sin θ. In this case, we have√
a2 − y2 =

√
a2 − a2 sin2 θ = a

√
1− sin2 θ

but we recognize 1− sin2 θ = cos2 θ, and so we have√
a2 − y2 = a cos θ.

As a point of interest, on the previous slide, we had x =
√

a2 − y2, under this
substitution x = a cos θ only makes far too much sense.
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Making the Trigonometric Substitution II
Going back to the integration, we have∫ b

0

√
a2 − y2 dy =

∫ b

0
(a cos θ)(a cos θ) dθ

where dy = a cos θ dθ. The resulting integral we handled in the previous lecture, and
so we have

Area = a2
(
θ

2
+

sin(2θ)
4

)∣∣∣∣b
0
= a2

(
b
2
+

sin(2b)
4

)
.
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Using Trigonometric Substitutions

Example

Evaluate the integral
∫

dx
x2
√

1 + x2
using a trigonometric substitution.

Solution: Seeing the form
√

1 + x2 in the denominator suggests the substitution
x = tan θ, since

√
1 + x2 = sec θ in this case. We have dx = sec2 θ dθ, and substituting

in we obtain ∫
dx

x2
√

1 + x2
=

∫
sec2 θ

(tan2 θ)(sec θ)
dθ.

Generally, we will want to rewrite expressions such as this in terms of sines and
cosines. In this case, after canceling the sec x in the denominator, we have∫

cos2 θ

(cos θ)(sin2 θ)
dθ =

∫
cos θ
sin2 θ

dθ.

We make one more substitution, u = sin θ, then du = cos θ dθ and we have∫
cos θ
sin2 θ

dθ =

∫
du
u2 = − 1

u
+ c.
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Let the Back Substituting Begin
In working backward now we have u = sin θ, so

− 1
u
+ c = − csc θ + c,

but how do we make the second back substitution to recover the answer in terms of
x. Recall we originally made the substitution x = tan θ. This determines the
following triangle,

Based on this triangle, we see that csc θ = 1/ sin θ and so we have∫
dx

x2
√

1 + x2
= − csc θ + c =

√
1 + x2

x
+ c.

Please understand that what was going on here was simply evaluating the
expression − csc(θ) = − csc(arctan x) since x = tan θ was our substitution.
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What Substitution Do I Make?
There are essentially three ways in which the previous example can change
and the all involve radicals of some type. The results of these substitutions
are summarized in the table below.
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Another Example

Example

Evaluate
∫

dx√
x2 + 4

by using the appropriate trigonometric substitution.

Solution: Our substitution in this case is x = 2 tan θ, then dx = 2 sec2 θ dt
and
√

x2 + 4 = 2 sec θ. Therefore,∫
dx√

x2 + 4
=

∫
2 sec2 θ

2 sec θ
dθ =

∫
sec θ dθ = ln | sec θ + tan θ | +c.

Back substituting, we observed that tan θ = x/2 and calculate
sec(arctan(x/2)) to arrive at our answer∫

sec θ dθ = ln

∣∣∣∣∣
√

4 + x2

2
+

x
2

∣∣∣∣∣+ c.
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Completing the Square

Example

Evaluate
∫

dx√
x2 + 2x + 5

using a trigonometric substitution.

Solution: At first this example does not seem of the proper type to admit a
trigonometric substitution, but completing the square in the denominator
gives ∫

dx√
x2 + 2x + 5

=

∫
dx√

(x + 1)2 + 4
.

Next, we make the direct substitution u = x + 1, du = dx and the result looks
familiar ∫

du√
u2 + 4

.

In this form we need only consult the previous problem for our answer.
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A Secant Substitution

Example
Evaluate ∫ 6

3

√
x2 − 9

x
dx.

Solution: We make the substitution x = 3 sec θ, dx = 3 tan θ sec θ dθ. Upon
substituting, we have

√
x2 − 9 = 3 tan θ. When x = 3, we have sec θ = 1, and θ = 0.

When x = 6, we have sec θ = 2 and θ = π/3. Therefore∫ 6

3

√
x2 − 9

x
dx =

∫ π/3

0

3 tan θ
3 sec θ

· 3 tan θ sec θ dθ

= 3
∫ π/3

0
tan2 θ dθ

= 3
∫ π/3

0
sec2 θ − 1 dθ

= 3 [tan θ − θ]π/3
0

= 3
(√

3− π

3

)
.
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