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Zeno’s Paradox
Achilles and the Tortoise

In a race, the quickest runner can never overtake the slowest, since the
pursuer must first reach the point whence the pursuit started, so that the
slower must always hold a lead.

-Aristotle

The Dichotomy Paradox

That which is in locomotion must arrive at the half-way stage before it
arrives at the goal.

-Aristotle

Both of these paradoxes requires one to complete an infinite number of tasks, and
so are thought be unachievable. We will illustrate this paradox by consider the
infinite sum,

1 +
1
2
+

1
4
+

1
8
+

1
16

+ . . . = ??

What is the sum of this series?
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Infinite Sequences

Definition (Infinite Sequence)
A sequence of real numbers is a real-valued function a(n) whose domain is a subset
of the non-negative integers. The numbers an = a(n) are the terms of the sequence.

A simple example of an infinite sequence is given by

1
2
,

2
3
,

3
4
,

4
5
,

5
6
, . . . ,

n
n + 1

, . . .

where
a1 =

1
1 + 1

, a2 =
2

2 + 1
, a3 =

3
3 + 1

, . . . , an =
n

n + 1
, . . .

and an is called the general term of the sequence.

Definition (Convergent Sequence)
We say a sequence a(n) converges to a limit L if and only if the limit of the general
term of the sequence converges to L. That is, an → L as n→∞ if for each ε > 0
there exists a positive integer N such that |an − L| < ε for all n > N.

What is the limit of the sequence above?
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Two Types of Sequences
So I thought this was supposed to be a lecture about series. Why are we spending
time on sequences? Well, it turns out that the question of the sum of an infinite
series is intimately related to the question of the convergence of series.

Definition (Arithmetic Progression)
A sequence is called an arithmetic progression if it has the property that the
difference between successive terms always has the same value. That is there is
some number d, such that an+1 − an = d for all n.

For example, the sequence 1, 4, 7, 10, . . . , 3n− 2 is arithmetic with d = 3 and general
term an = 3n− 2. Because of this, this sequence diverges to +∞ because
limn→∞ an =∞.

Definition (Geometric Progression)
A geometric progression is a sequence in which there is some number r, called the
common ratio, with the property that

an+1

an
= r, for all n.

Slide 4/14 — Dr. John Ehrke — Lecture 10 — Fall 2012



A B I L E N E C H R I S T I A N U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Geometric Sequences
An example of a geometric progression is the sequence

3
2
,

3
4
,

3
8
,

3
16
, . . . ,

3
2n , . . .

(
r =

1
2

)
.

It is clear that if a0, a1, a2, . . . an is a geometric progression with common ratio r, then

an = a0rn, n = 1, 2, . . . .

This property of geometric progressions leads to the following result.

Geometric Progression Theorem
Suppose that a0, a1, a2, . . . , an is a geometric sequence with common ratio r. Then
one of the following must be true about a(n):

1 If −1 < r < 1 is the common ratio of a geometric sequence, then the limit of the
sequence is 0.

2 If |r| > 1 then the sequence will not converge.

3 If r = 1 then all the terms of the sequence are identical and the sequence
converges to the value of a0.

4 If r = −1, then the terms of the sequence alternate between a0,−a0 and so no
limit exists.
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Returning to Our Original Question

Definition (Partial Sum)
Let a1 + a2 + . . .+ ak + ak+1 + . . . be an infinite series. In sigma notation,

∞∑
k=1

ak = a1 + a2 + . . .+ ak + ak+1 + . . .

The nth partial sum, Sn is given by Sn = a1 + a2 + a3 + . . .+ an.

Example
What are the partial sums for n = 1, 2, 3, . . . for the series

1
2
+

1
4
+

1
8
+

1
16

+ . . . = ?

Listing out the partial sums of this series, we obtain

S1 =
1
2
, S2 =

3
4
, S3 =

7
8
, S4 =

15
16
, . . . , Sn = 1− 1

2n .

Clearly the limit is lim
n→∞

Sn = 1, but what does this mean?
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Convergence of Infinite Series
Given a set of numbers {a1, a2, a3, . . .}, the sum a1 + a2 + a3 =

∑∞
i=1 ai is called an

infinite series. Its sequence of partial sums, {Sn} has the terms:

S1 = a1

S2 = a1 + a2

S3 = a1 + a2 + a3

...

Sn = a1 + a2 + a3 + . . .+ an =
n∑

i=1

ai, n = 1, 2, 3, . . .

If the sequence of partial sums has a limit L, the infinite series converges to that
limit, and we write

∞∑
i=1

ai = lim
n→∞

n∑
i=1

ai = lim
n→∞

Sn = L.

If the sequence of partial sums diverges (i.e. the limit L =∞, or does not exist), the
infinite series also diverges.
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Geometric Series

Definition (Geometric Series)
The geometric series is the infinite sum given by

∞∑
n=0

a0rn = a0 + a0r + a0r2 + a0r3 + . . .+ a0rn + . . .

Given this definition there are two questions which immediately arise.

(a) What are the values of r for which this series converges?

(b) What is the sum of the series when it is convergent?

Solution: The partial sums of the geometric series are

s1 = a0, s2 = a0 + a0r, s3 = a0 + a0r + a0r2, . . . sn = a0(1 + r + r2 + r3 + . . .+ rn−1).

If multiply each side of sn by r we obtain

rsn = a0(r + r2 + r3 + . . . rn)

and subtracting we have sn − rsn = a0(1 − rn). Solving for sn we obtain the nth partial sum of
the geometric series

sn = a0

(
1 − rn

1 − r

)
.
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Geometric Series Continued...

Sum of a Geometric Series
A geometric series

∞∑
n=0

arn = a + ar + ar2 + ar3 + . . .+ arn + . . .

converges if and only if −1 < r < 1 and diverges if |r| ≥ 1. If the series converges, its
sum is given by

∞∑
n=0

arn =
a

1− r

Proof: Because the general term of the sequence of partial sums for the geometric series is
given by

sn = a
(

1 − rn

1 − r

)
=

a
1 − r

−
a

1 − r
rn

and −1 < r < 1 then
lim

n→∞
Sn =

a
1 − r

giving the result. It is one of the most important objectives of this unit that you are able to use
this result to solve geometric series.
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Properties of Convergent Series
1 Suppose

∑
ak converges to A and let c be a real number. The series

∑
cak converges and∑

cak = c
∑

ak = cA.

2 Suppose
∑

ak converges to A and
∑

bk converges to B. The series
∑

(ak ± bk)
converges and ∑

(ak ± bk) =
∑

ak ±
∑

bk = A ± B.

3 Whether a series converges does not depend on a finite number of terms added to or
removed from the series. Specifically, if M is a positive integer, then

∞∑
k=1

ak and
∞∑

k=M

ak

both converge or both diverge. However, the value of the series would change.

4 (Re-indexing) Changing the index of a sum does not change the convergence of the sum.
For example,

n∑
k=1

ak =

n−1∑
k=0

ak+1.

Notice subtracting one from the index results in adding one to the term of the series.
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Using the Geometric Series Formula

Example
Evaluate the infinite series

S =

∞∑
k=1

[
5
(

2
3

)k

− 2k−1

7k

]
.

Solution: Recall that the sum of a geometric series is given by

∞∑
n=0

rn =
a

1− r
.

Using this we have
∞∑

k=1

5
(

2
3

)k

=

[
5(2/3)
1− 2

3

]
= 10

and
∞∑

k=1

2k−1

7k =
1/7

1− 2/7
=

1
5
.

both series converge, and so their combined value is S = 10− 1
5 = 49

5 .
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Infinite Series and Notation

A series S =
∞∑

k=1

ak has partial sums, Sn, given by Sn =
n

2n− 1
.

1 Is
∞∑

k=1

ak convergent or divergent? If it is convergent, what is the sum?

2 What is lim
k−>∞

ak?

3 What is the value of a9?

4 What is the value of the sum,
10∑

n=1

ak?

Solution: Clearly this is convergent since lim
n→∞

Sn = 1/2. So the sum, S = 1/2.

Since the sum converges, we must have lim
k→∞

ak = 0, or else the sum wouldn’t

converge. The value of a9 = S9 − S8 which is a9 = 9/17− 8/15 = −1/255. Finally,
10∑

n=1

ak = S10 =
10
19
.
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A Telescoping Sum In Two Ways

Example
Consider the infinite series

∞∑
i=1

1
i(i + 1)

.

Find the first four terms of the sequence of partial sums. Find an expression for Sn and make a
conjecture about the value of series. Prove your conjecture.

Solution: The sequence of partial sums can be evaluated as follows:

S1 = 1/2, S2 = 1/2 + 1/6 = 2/3, S3 = 1/2 + 1/6 + 1/12 = 3/4, . . . Sn = n/n + 1.

Because the lim
n→∞

n/n + 1 = 1, we conclude that limn→∞ Sn = 1. Using partial fractions, the

sequence of partial sums is

Sn =
n∑

i=1

1
i(i + 1)

=
n∑

i=1

(
1
i
−

1
i + 1

)
.

Writing out this sum, we see that

Sn =

(
1 −

1
2

)
+

(
1
2
−

1
3

)
+ . . .+

(
−

1
n
+

1
n

)
−

1
n + 1

= 1 −
1

n + 1
.
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An Unusual Application

Example
Express the repeating decimal 5.2323232323... as an improper fraction.

Solution: To express the repeating decimal as a fraction we recognize the decimal
as being the same as

5.232323... = 5 +
23
102 +

23
104 +

23
106 + . . .

Looking at the series created, if we factor out the beginning term, we have,

5.232323... = 5 +
23
102

[
1 +

1
102 +

1
104 + . . .

]
which is a geometric series. Using the sum formula for the geometric series, we have

5.232323... = 5 +
23
102 ·

1
1− (1/100)

= 5 +
23
99

=
518
99

.
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