Department of Mathematics

Substitution Rule

Sections 5.5

Dr. John Ehrke Department of Mathematics

Spring 2013

Making a Change of Variables

The most common technique for evaluating integrals (both definite and indefinite) is making a substitution. To this end, we will consider an example to start with and then make some general observations.

Example

Evaluate the indefinite integral $\int 2x \cdot (x^2 - 5)^3 dx$.

Making a Change of Variables

The most common technique for evaluating integrals (both definite and indefinite) is making a substitution. To this end, we will consider an example to start with and then make some general observations.

Example

Evaluate the indefinite integral $\int 2x \cdot (x^2 - 5)^3 dx$.

Solution: Let $u(x) = x^2 - 5$, then calculating the differential, du = 2x dx. Making this substitution gives

$$\int 2x \cdot (x^2 - 5)^3 \, dx = \int u^3 \, du.$$

Substitution trades one integral for another and this new integral is elementary. We evaluate this new integral

$$\int u^3 \, du = \frac{u^4}{4} + c.$$

We back substitute in terms of *x*, and obtain $\frac{u^4}{4} + c = \frac{(x^2 - 5)^4}{4} + c.$

Adjusting Your Substitution

You should not expect every substitution to go that neatly. Usually you will need to adjust a constant as in the following example.

Example

Evaluate the indefinite integral

$$\int \frac{2x}{\sqrt{3x^2 - 1}} \, dx.$$

Adjusting Your Substitution

You should not expect every substitution to go that neatly. Usually you will need to adjust a constant as in the following example.

Example

Evaluate the indefinite integral
$$\int \frac{2x}{\sqrt{3x^2-1}} dx$$
.

Solution: Let $u(x) = 3x^2 - 1$, then du = 6x dx, but upon examination of the integrand we need 2x dx not 6x dx. If we go ahead and make this substitution then we have multiplied by 3 times too much. To offset this we divide by 3 as well. In this case we obtain,

$$\int \frac{2x}{\sqrt{3x^2 - 1}} dx = \frac{1}{3} \cdot \int \frac{du}{\sqrt{u}}$$
$$= \frac{2}{3}\sqrt{u} + c$$
$$= \frac{2}{3}\sqrt{3x^2 - 1} + c$$

Inverse Substitutions

Sometimes you think a particular substitution should work, only to find a variable or two have been unaccounted. Not all hope is lost in this case, as we will see in the next example.

Example Evaluate the indefinite integral $\int \frac{x}{\sqrt{2x+3}} dx$.

Inverse Substitutions

Sometimes you think a particular substitution should work, only to find a variable or two have been unaccounted. Not all hope is lost in this case, as we will see in the next example.

Example

Evaluate the indefinite integral
$$\int \frac{x}{\sqrt{2x+3}} dx$$
.

Solution: We start as usual by letting $u = \sqrt{2x+3}$, then $du = dx/\sqrt{2x+3}$. Substitution gives

$$\int \frac{x}{\sqrt{2x+3}} \, dx = \int x \frac{dx}{\sqrt{2x+3}} = \int x \, du.$$

What about the remaining *x*? The trick is to write *x* in terms of *u*, as follows

$$u = \sqrt{2x+3} \Longrightarrow u^2 = 2x+3 \Longrightarrow \frac{u^2-3}{2} = x.$$

Solution continued...

Making this new inverted substitution, we have

$$\int x \, du = \int \frac{u^2 - 3}{2} \, du$$
$$= \frac{u^3}{6} - \frac{3u}{2} + c$$
$$= \frac{(2x+3)^{3/2}}{6} - \frac{3\sqrt{2x+3}}{2} + c.$$

Often times when a variable is left out like this, the answer was to make your initial substitution in terms of *x* and *dx* rather than *u* and *du*. In this case, we would have had $dx = u \, du$ and $x = (u^2 - 3)/2$, and would have gotten

$$\int \frac{x}{\sqrt{2x+3}} \, dx = \int \frac{u^2 - 3}{2u} \, u \, du = \int \frac{u^2 - 3}{2} \, du$$

as before.

J

Multiple Substitutions

In some cases multiple substitutions are possible to achieve the same answer. Keep this in mind when trying to simplify your work.

Example Evaluate the definite integral $\int \frac{dx}{1 + \sqrt{x}}$.

Multiple Substitutions

In some cases multiple substitutions are possible to achieve the same answer. Keep this in mind when trying to simplify your work.

Example

Evaluate the definite integral

$$\int \frac{dx}{1+\sqrt{x}}.$$

Solution: Let $u = \sqrt{x}$, then using inverse substitution we have $x = u^2$ and $dx = 2u \, du$. Substituting for *x* and *dx* gives

$$\int \frac{dx}{1+\sqrt{x}} = \int \frac{2u}{1+u} \, du.$$

A second substitution is needed, but we are making progress as the second integral was simpler than the first. If v = 1 + u, then dv = du and u = v - 1, so

$$\int \frac{2u}{1+u} \, du = \int \frac{2(v-1)}{v} \, dv = 2 \int \left(1 - \frac{1}{v}\right) \, dv = 2(v - \ln |v|) + c.$$

٠

Solution continued...

Finally, we substitute back for *x*,

 $2(v - \ln |v|) + c = 2(1 + u - \ln |1 + u|) + c = 2 + 2\sqrt{x} - 2\ln |1 + \sqrt{x}| + c.$

It turns out a better first substitution would work in avoiding having to make two substitutions. We let $\sqrt{x} = u - 1$, then $x = u^2 - 2u + 1 = (u - 1)^2$ and dx = 2(u - 1) du. Substituting for *x* and *dx*,

$$\int \frac{2(u-1)}{u} \, du = 2 \int du - 2\frac{du}{u} = 2u - 2\ln u + c.$$

Back substituting for *x*, we have

$$2u - 2\ln u + c = 2(1 + \sqrt{x}) - 2\ln(1 + \sqrt{x}) + c.$$

This is probably not the best form to leave our answer in since it includes a constant 2 which we can lump in with the constant *c*. Making this change we have

$$2\sqrt{x} - 2\ln(1 + \sqrt{x}) + d.$$

What about definite integrals?

In the case of definite integral substitutions we must take the limits into account as well. This next example will illustrate the process.

Example

Evaluate the definite integral

$$\sin^{\pi}(y) \cdot e^{\cos(y)} \, dy.$$

What about definite integrals?

In the case of definite integral substitutions we must take the limits into account as well. This next example will illustrate the process.

Example

Evaluate the definite integral
$$\int_{\pi/2}^{\pi} \sin(y) \cdot e^{\cos(y)} dy$$
.

Solution: We make the substitution $u = \cos y$, then $du = -\sin y$. Under these substitutions, we evaluate u(y) at each of the limits of integration and obtain $u(\pi/2) = \cos(\pi/2) = 0$, and $u(\pi) = \cos \pi = -1$. In this case, we have

$$\int_{\pi/2}^{\pi} \sin y \, e^{\cos y} \, dy = -\int_{0}^{-1} e^{u} \, du = \int_{-1}^{0} e^{u} \, du = e^{0} - e^{-1} = 1 - \frac{1}{e}$$

Notice we did not need to back substitute before evaluating the integral.