## Substitution Rule

## Sections 5.5

Dr. John Ehrke

Department of Mathematics

## Making a Change of Variables

The most common technique for evaluating integrals (both definite and indefinite) is making a substitution. To this end, we will consider an example to start with and then make some general observations.

## Example

Evaluate the indefinite integral $\int 2 x \cdot\left(x^{2}-5\right)^{3} d x$.

## Making a Change of Variables

The most common technique for evaluating integrals (both definite and indefinite) is making a substitution. To this end, we will consider an example to start with and then make some general observations.

## Example

Evaluate the indefinite integral $\int 2 x \cdot\left(x^{2}-5\right)^{3} d x$
Solution: Let $u(x)=x^{2}-5$, then calculating the differential, $d u=2 x d x$. Making this substitution gives

$$
\int 2 x \cdot\left(x^{2}-5\right)^{3} d x=\int u^{3} d u
$$

Substitution trades one integral for another and this new integral is elementary. We evaluate this new integral

$$
\int u^{3} d u=\frac{u^{4}}{4}+c
$$

We back substitute in terms of $x$, and obtain $\frac{u^{4}}{4}+c=\frac{\left(x^{2}-5\right)^{4}}{4}+c$.

## Adjusting Your Substitution

You should not expect every substitution to go that neatly. Usually you will need to adjust a constant as in the following example.

## Example

Evaluate the indefinite integral $\int \frac{2 x}{\sqrt{3 x^{2}-1}} d x$.

## Adjusting Your Substitution

You should not expect every substitution to go that neatly. Usually you will need to adjust a constant as in the following example.

## Example

Evaluate the indefinite integral $\int \frac{2 x}{\sqrt{3 x^{2}-1}} d x$.
Solution: Let $u(x)=3 x^{2}-1$, then $d u=6 x d x$, but upon examination of the integrand we need $2 x d x$ not $6 x d x$. If we go ahead and make this substitution then we have multiplied by 3 times too much. To offset this we divide by 3 as well. In this case we obtain,

$$
\begin{aligned}
\int \frac{2 x}{\sqrt{3 x^{2}-1}} d x & =\frac{1}{3} \cdot \int \frac{d u}{\sqrt{u}} \\
& =\frac{2}{3} \sqrt{u}+c \\
& =\frac{2}{3} \sqrt{3 x^{2}-1}+c
\end{aligned}
$$

## Inverse Substitutions

Sometimes you think a particular substitution should work, only to find a variable or two have been unaccounted. Not all hope is lost in this case, as we will see in the next example.

Example
Evaluate the indefinite integral $\int \frac{x}{\sqrt{2 x+3}} d x$.

## Inverse Substitutions

Sometimes you think a particular substitution should work, only to find a variable or two have been unaccounted. Not all hope is lost in this case, as we will see in the next example.

## Example

Evaluate the indefinite integral $\int \frac{x}{\sqrt{2 x+3}} d x$.
Solution: We start as usual by letting $u=\sqrt{2 x+3}$, then $d u=d x / \sqrt{2 x+3}$. Substitution gives

$$
\int \frac{x}{\sqrt{2 x+3}} d x=\int x \frac{d x}{\sqrt{2 x+3}}=\int x d u
$$

What about the remaining $x$ ? The trick is to write $x$ in terms of $u$, as follows

$$
u=\sqrt{2 x+3} \Longrightarrow u^{2}=2 x+3 \Longrightarrow \frac{u^{2}-3}{2}=x
$$

## Solution continued...

Making this new inverted substitution, we have

$$
\begin{aligned}
\int x d u & =\int \frac{u^{2}-3}{2} d u \\
& =\frac{u^{3}}{6}-\frac{3 u}{2}+c \\
& =\frac{(2 x+3)^{3 / 2}}{6}-\frac{3 \sqrt{2 x+3}}{2}+c
\end{aligned}
$$

Often times when a variable is left out like this, the answer was to make your initial substitution in terms of $x$ and $d x$ rather than $u$ and $d u$. In this case, we would have had $d x=u d u$ and $x=\left(u^{2}-3\right) / 2$, and would have gotten

$$
\int \frac{x}{\sqrt{2 x+3}} d x=\int \frac{u^{2}-3}{2 u} u d u=\int \frac{u^{2}-3}{2} d u
$$

as before.

## Multiple Substitutions

In some cases multiple substitutions are possible to achieve the same answer. Keep this in mind when trying to simplify your work.

## Example

Evaluate the definite integral $\int \frac{d x}{1+\sqrt{x}}$.

## Multiple Substitutions

In some cases multiple substitutions are possible to achieve the same answer. Keep this in mind when trying to simplify your work.

## Example

Evaluate the definite integral $\int \frac{d x}{1+\sqrt{x}}$.

Solution: Let $u=\sqrt{x}$, then using inverse substitution we have $x=u^{2}$ and $d x=2 u d u$. Substituting for $x$ and $d x$ gives

$$
\int \frac{d x}{1+\sqrt{x}}=\int \frac{2 u}{1+u} d u .
$$

A second substitution is needed, but we are making progress as the second integral was simpler than the first. If $v=1+u$, then $d v=d u$ and $u=v-1$, so

$$
\int \frac{2 u}{1+u} d u=\int \frac{2(v-1)}{v} d v=2 \int\left(1-\frac{1}{v}\right) d v=2(v-\ln |v|)+c .
$$

## Solution continued...

Finally, we substitute back for $x$,
$2(v-\ln |v|)+c=2(1+u-\ln |1+u|)+c=2+2 \sqrt{x}-2 \ln |1+\sqrt{x}|+c$.
It turns out a better first substitution would work in avoiding having to make two substitutions. We let $\sqrt{x}=u-1$, then $x=u^{2}-2 u+1=(u-1)^{2}$ and $d x=2(u-1) d u$. Substituting for $x$ and $d x$,

$$
\int \frac{2(u-1)}{u} d u=2 \int d u-2 \frac{d u}{u}=2 u-2 \ln u+c .
$$

Back substituting for $x$, we have

$$
2 u-2 \ln u+c=2(1+\sqrt{x})-2 \ln (1+\sqrt{x})+c .
$$

This is probably not the best form to leave our answer in since it includes a constant 2 which we can lump in with the constant $c$. Making this change we have

$$
2 \sqrt{x}-2 \ln (1+\sqrt{x})+d
$$

## What about definite integrals?

In the case of definite integral substitutions we must take the limits into account as well. This next example will illustrate the process.

## Example

Evaluate the definite integral $\int_{\pi / 2}^{\pi} \sin (y) \cdot e^{\cos (y)} d y$.

## What about definite integrals?

In the case of definite integral substitutions we must take the limits into account as well. This next example will illustrate the process.

## Example

Evaluate the definite integral $\int_{\pi / 2}^{\pi} \sin (y) \cdot e^{\cos (y)} d y$.
Solution: We make the substitution $u=\cos y$, then $d u=-\sin y$. Under these substitutions, we evaluate $u(y)$ at each of the limits of integration and obtain $u(\pi / 2)=\cos (\pi / 2)=0$, and $u(\pi)=\cos \pi=-1$. In this case, we have

$$
\int_{\pi / 2}^{\pi} \sin y e^{\cos y} d y=-\int_{0}^{-1} e^{u} d u=\int_{-1}^{0} e^{u} d u=e^{0}-e^{-1}=1-\frac{1}{e}
$$

Notice we did not need to back substitute before evaluating the integral.

