
A B I L E N E C H R I S T I A N U N I V E R S I T Y

Department of Mathematics

Integration by Parts
Section 5.6

Dr. John Ehrke
Department of Mathematics

Spring 2013



A B I L E N E C H R I S T I A N U N I V E R S I T Y D E P A R T M E N T O F M A T H E M A T I C S

Inverse of the Product Rule
In some sense, the substitution rule covered in the previous lecture is the
reverse of the chain rule for derivatives. In a similar sense, integration by
parts primary function is undoing the product rule for derivatives. Recall,
the product rule for derivatives says that, for differentiable functions u and
v,

(u · v)′ = u · v′ + v · u′.

From the anti derivative point of view, the product rule says that uv is an
antiderivative of uv′ + u′v. In symbols,∫

(u(x) · v′(x) + v(x) · u′(x)) dx = u(x) · v(x).

Equivalently, ∫
u(x) · v′(x) dx = u(x) · v(x)−

∫
v(x) · u′(x) dx.

This is the formula for integration by parts and this technique always
works, albeit slowly sometimes.
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The Steps Involved
What you hope for when using the integration by parts technique is to trade
a difficult integral problem for a slightly simpler problem. Picking
u(x), v′(x) wisely is often the key to making this process go smoothly. We
outline the steps involved with the following example, which on the surface
seems intractable.

Example

Use integration by parts to evaluate
∫

ln x dx.

Solution: If we set u(x) = ln x, then dv = 1dx, so du = 1/x dx and v(x) = x.
Using the integration by parts formula, this gives∫

ln x dx = x · ln | x | −
∫

1 dx = x · ln x− x + c.

Notice, that the choice of u(x) = 1 would cause dv = ln x dx and make the
process redundant.
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Taking it Further
Let’s see if we can expand this idea to a point where we can use it to define
a family of anti derivatives.

Example

Use the results of the previous example to evaluate
∫
(ln x)2 dx.

Solution: In this case, we are going to let u(x) = (ln x)2 and dv = 1 dx and so
v(x) = x and du = 2 ln x · (1/x). We’ll throw this at the formula and see what
we get.∫

(ln x)2 dx = x · (ln x)2 −
∫

2 ln x · 1
x
· x dx = x · (ln x)2 −

∫
2 ln x dx.

But this new integral can be resolved from our previous example. In this
case, we have ∫

(ln x)2 dx = x · (ln x)2 − 2(x · ln | x | −x) + c.
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One More Time, Obtaining a Reduction Formula

Example

Use the results of the previous examples to evaluate
∫
(ln x)n dx for

n = 0, 1, 2, . . ..

Solution: Let u(x) = (ln x)n, and dv = 1 dx as before. Then v(x) = x and
dv = n(ln x)n−1(1/x). Putting this all together, we obtain

x · (x ln x)n − n
∫

(ln x)n−1 · 1
x
· x dx.

If we use the notation Fn(x) =
∫
(ln x)n dx. Then Fn(x) = x(ln x)n − nFn−1(x).

This completely describes the process hinted at by the previous examples.
For example,

F0(x) =
∫

(ln x)0 dx = x + c

F1(x) = x ln x− F0(x) = x ln x− x + c

F2(x) = x(ln x)2 − 2F1(x) = x(ln x)2 − 2(x ln x− x) + c
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Another Reduction Example

Example
Find the reduction formulae describing how to integrate

∫
xnex dx.

Solution: A choice needs to be made here as to which function we choose
for u(x). Notice that only one of the functions is made simpler under
differentiation, so we choose u(x) = xn and dv = ex dx. This gives
du = nxn−1 dx and v(x) = ex. Integrating by parts, we obtain∫

xnex dx = xnex −
∫

nxn−1ex dx.

We summarize this recurrence with Gn(x) =
∫

xnex dx, then
Gn(x) = xnex − nGn−1(x). So we have,

G0(x) = ex + c
G1(x) = xex − G0(x) = xex − ex + c

G2(x) = x2ex − 2(xex − ex) + c
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Open Class Example

Example

Evaluate
∫

x
√

x + 1 dx using any analytic method of your choice.

Solution: Let u = x and dv = (x + 1)1/2. Then du = dx and v = 2
3 (x + 1)3/2.

Putting this all together we have

∫
x
√

x + 1 dx = x · 2
3
(x + 1)3/2 −

∫
2
3
(x + 1)3/2 dx

=
2
3

x(x + 1)3/2 − 2
3
· 2

5
(x + 1)5/2 + C

=
2
3

x(x + 1)3/2 − 4
15

(x + 1)5/2 + C
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Integrating Twice and Then Solving
We will come back to this example later in the semester and simplify it somewhat,
but for now we consider an example which on the surface seems to go in circles.

Example
Use integration by parts to evaluate

∫
ex sin x dx.

Solution: If we set u(x) = sin x, then dv = ex dx, du = cos x dx, v = ex and

I =
∫

ex sin x dx = ex sin x−
∫

ex cos x dx.

We haven’t made much progress, so let’s try integration by parts again on the new
integral. If u(x) = cos x, then dv = ex dx, du = − sin x dx and v = ex, so

I = ex sin x−
∫

ex cos x dx = ex sin x−
(

ex cos x +

∫
ex sin x dx

)
.

The original integral I, has reappeared. We can solve the last equation for I, and
obtain

I =
1
2
(ex sin x− ex cos x) + c.
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Handling Definite Integrals

Definite Integration by Parts
Let u(x) and v(x) be differentiable functions, and suppose u′(x) and v′(x) are
continuous on [a, b], then∫ b

a
u(x)v′(x) dx = u(x)v(x)|ba −

∫ b

a
u′(x)v(x) dx.

Example
Evaluate

∫ π

0 x cos(2x) dx.

Solution: We choose u(x) = x, and dv = cos(2x) dx, so that du = 1 dx and
v(x) = sin(2x)/2 and we have

x
2

sin(2x)
∣∣∣π

0
− 1

2

∫ π

0
sin(2x) dx.

This gives

0− 1
2

(
−1

2
cos(2x)

)∣∣∣∣π
0
= 0− 1

2

(
−1

2
+

1
2

)
= 0.
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Tabular Integration by Parts Example

Example
Evaluate

∫
x3 sin x dx using integration by parts.

Solution: We will begin by making a table containing the derivatives of p(x) = x3

(what we would have called u previously) and f (x) = sin x (what we would have
called dv previously). The result is the following table.

± d/dx
∫

dx

+ x3 sin x
- 3x2 − cos x
+ 6x − sin x
- 6 cos x
+ 0 sin x

Now simply pair the 1st entry of the first column with the 2nd entry of the second
column, until further pairing results in a zero pair. The result in this case is

(+)(x3)(− cos x) + (−)(3x2)(− sin x) + (+)(6x)(cos x) + (−)(6)(sin x)

= −x3 cos x + 3x2 sin x + 6x cos x− 6 sin x + C
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Open Class Example

Example

Evaluate
∫

2x3e3x dx using tabular integration.

Solution: We apply integration by parts again rather than do three integration by
parts calculations.

± d/dx
∫

dx

+ 2x3 e3x

- 6x e3x/3
+ 6 e3x/9
- 0 e3x/27

Our answer then is given by

2
3

x3e3x − 2
3

xe3x +
2
9

e3x + C.
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Not everything is integrable
Some functions are not integrable. This means there is no closed form
answer which describes their antiderivative. The function f (x) = ex2

is a
classic example of this, but sometimes these functions when paired with
other integrable functions can yield results.

Example

For a given non-negative integer n, does xn · ex2
have an elementary anti

derivative?

Solution: For n = 0, no in that case, the integrand is ex2
which is not

integrable. For n = 1, the answer is yes, since the substitution u = x2

produces the anti derivative exp(x2)/2. We might guess then, that the
answer is yes for odd n and no for even n.
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Checking our Guess
Our guess is correct. To see why we let u = xn−1 and dv = x · exp(x2) dx
leads to ∫

xnex2
dx = xn−1 ex2

2
− n− 1

2

∫
xn−2ex2

dx.

We observe two things:
• The left-hand integrand has an elementary anti derivative if and only if

the one on the right does.
• Applying the reduction repeatedly knocks down the power of x by 2

each time. We’ll eventually reach either 0 or 1, depending on whether n
is odd or even. These facts combined with what we know for n = 0 and
n = 1, show our conjecture to be correct.
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