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Binary Arithmetic: From Leibniz to von Neumann ∗

Dr. John Ehrke

Instructions

In this project you will explore the foundations of the binary number system. You should begin by reading
through this document. This is a significant course requirement. (Each reflection paper constitutes 10% of
your course grade.) The historical presentation is often more verbal than modern textbook formulations,
which carries the advantage that no technical knowledge is assumed a priori. On the other hand, you must
carefully read the historical author’s words and be prepared to experiment with your own calculations to
verify or amplify the historical source. Here are some specific instructions.

1. The final work should be a written paper, composed in LATEX, in which you address all issues raised
in the project. Use complete sentences along with modern notations, equations, etc... to support
your claims, but do not simply list the questions posed in this paper and answer them. Your work
should possess narrative qualities, including an introduction, conclusion, and a well organized flow.

2. Reflect upon and discuss any connections from the historical source with present day techniques
that you may have encountered. How does the historical source differ from textbook presentation?

3. You should seek additional historical or mathematical information about the principle parties of the
project, and provide insights to the ideas presented in this project that are a result of your findings.

The Era of Leibniz

Gottfried Wilhelm Leibniz (1646–1716) is often described as the last universalist, having contributed to
virtually all fields of scholarly interest of his time, including law, history, theology, politics, engineering,
geology, physics, and perhaps most importantly, philosophy, mathematics and logic [1, 9, 11]. The young
Leibniz began to teach himself Latin at the age of 8, and Greek a few years later, in order to read classics
not written in his native language, German. Later in life, he wrote:

Before I reached the school-class in which logic was taught, I was deep into the historians and
poets, for I began to read the historians almost as soon as I was able to read at all, and I
found great pleasure and ease in verse. But as soon as I began to learn logic, I was greatly
excited by the division and order in it. I immediately noticed, to the extent that a boy of 13
could, that there must be a great deal in it [5, p. 516].

∗This project adapted from the one found in Barnett, J., Bezhanishvili, G., Leung, H., Lodder, J., Pengelley, D., Ranjan,
D., ”Historical Projects in Discrete Mathematics and Computer Science” in Resources for Teaching Discrete Mathematics,
Hopkins, B. (editor), Mathematical Association of America, Washington, D.C., 2009.
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His study of logic and intellectual quest for order continued throughout his life and became a basic principle
to his method of inquiry. At the age of 20 he published Dissertatio de arte combinatoria (Dissertation
on the Art of Combinatorics) in which he sought a characteristica generalis (general characteristic) or
a lingua generalis (general language) that would serve as a universal symbolic language and reduce all
debate to calculation. Leibniz maintained:

If controversies were to arise, there would be no more need of disputation between two philoso-
phers than between two accountants. For it would suffice to take their pencils in their hands,
to sit down to their slates, and to say to each other: . . . Let us calculate [14, p. 170].

The Leipzig-born scholar traveled extensively with diplomatic visits to Paris and London, and extended
trips to Austria and Italy to research the history of the House of Brunswick. The years 1672–1676 were
spent in Paris in an attempt to persuade King Louis XIV (1638–1715) not to invade Germany, but Egypt
instead, although Leibniz was never granted an audience with the French king. During this time in Paris,
however, the young German became acquainted with several of the leading philosophers of the day, ac-
quired access to unpublished manuscripts of Blaise Pascal (1623–1662) and René Descartes (1596–1650),
and met the renowned Christiaan Huygens (1629–1695), from whom he learned much about contempo-
rary mathematics. During these years he laid the foundation of his calculus and the core of what would
become his philosophical legacy.

Leibniz’s invention of the differential and integral calculus is, in part, a product of his search for a uni-
versal language. Questions in the calculus can be reduced to the rules of calculation which the symbols
for derivative, d, and integral,

∫
, satisfy. Sadly a priority dispute with Isaac Newton (1642–1727) over

the invention of calculus cast a pall over Leibniz’s later years. Moreover, he became a subject of ridicule
with his philosophy that this is the best of all possible worlds bitterly satirized in Voltaire’s (1694–1778)
play Candide.

Let’s turn to the universal genius’s 1703 publication “Explication de l’arithmétique binaire, qui se sert
des seuls caractères 0 et 1, avec des remarques sur son utilité, et sur ce qu’elle donne le sens des anci-
ennes figures Chinoises de Fohy” [6, p. 223–227] (An Explanation of Binary Arithmetic Using only the
Characters 0 and 1, with Remarks about its Utility and the Meaning it Gives to the Ancient Chinese
Figures of Fuxi), which originally appeared in the journal Memoires de l’Académie Royale des Sciences
[13]. Here again, with the reduction of arithmetic to expressions involving only zeroes and ones, we see
a possible candidate for Leibniz’s characteristica generalis. Of binary numeration, he writes “it permits
new discoveries [in] . . . arithmetic . . . in geometry, because when the numbers are reduced to the sim-
plest principles, like 0 and 1, a wonderful order appears everywhere.” Concerning the binary calculations
themselves “ . . . these operations are so easy that we shall never have to guess or apply trial and error, as
we must do in ordinary division. Nor do we need to learn anything by rote.” Certainly Leibniz was not
the first to experiment with binary numbers or the general concept of a number base [7]. However, with
base 2 numeration, Leibniz witnessed the confluence of several intellectual ideas of his world view, not
just the characteristica generalis, but also theological and mystical ideas of order, harmony and creation
[16]. Additionally his 1703 paper [13] contains a striking application of binary numeration to the ancient
Chinese text of divination, the Yijing (I-Ching or Book of Changes).

Early in life Leibniz developed an interest in China, corresponded with Catholic missionaries there, and
wrote on questions of theology concerning the Chinese. Surprisingly he believed that he had found an
historical precedent for his binary arithmetic in the ancient Chinese lineations or 64 hexagrams of the
Yijing. This, he thought, might be the origin of a universal symbolic language. A hexagram consists of
six lines atop one another, each of which is either solid or broken, forming a total of 64 possibilities, while
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a grouping of only three such lines is called a trigram [cova]. Leibniz lists the eight possible trigrams in
his exposition on binary arithmetic, juxtaposed with their binary equivalents.

He had been in possession of his ideas concerning binary arithmetic well before his 1703 publication. In
1679 Leibniz outlined plans for a binary digital calculating machine, and in 1697 he sent a congratulatory
birthday letter to his patron Duke Rudolph August of Brunswick, in which he discusses binary numer-
ation and the related creation theme with 0 denoting nothing and 1 denoting God [16]. Furthermore,
Leibniz sent the French Jesuit Joachim Bouvet (1656–1730) an account of his binary system while Bouvet
was working in China. The Jesuits are an educational order of Catholic priests, who, while in China,
sought the conversion of the Chinese to Christianity, hopefully by the identification of an ancient theology
common to both religions. Bouvet began a study of the Yijing, viewing this text as the possible missing
link between the two religions [16]. It was from this Jesuit priest that Leibniz received the hexagrams
attributed to Fuxi, the mythical first Emperor of China and legendary inventor of Chinese writing. In
actuality, the hexagrams are derived from the philosopher Shao Yong’s (1011–1077) Huangji jingshi shu
(Book of Sublime Principle Which Governs All Things Within the World). Shortly after receiving Bouvet’s
letter containing the hexagrams and Bouvet’s identification of a relation between them and binary nu-
meration, Leibniz submitted for publication his 1703 paper “Explanation of Binary Arithmetic” [3, p. 44].

Exercise 1: Concerning the utility of the binary system, Leibniz cites an application to weighing masses.
Suppose that a two-pan balance is used for weighing stones. A stone of unknown (integral) weight is
placed on the left pan, while standard weights are placed only on the right pan until both sides balance.
For example, if standard weights of 1, 4, 6 are used, then a stone of weight 7 on the left pan would balance
the standard weights 1 and 6 on the right. Two standard weights with the same value cannot be used.
Leibniz claims that all stones of integral weight between 1 and 15 inclusive can be weighed with just four
standard weights. What are these four standard weights? Explain how each stone of weight between 1
and 15 inclusive can be weighed with the four standard weights. Make a table with one column for each
of the four standard weights and another column for the stone of unknown weight. For each of the 15
stones, place an “X” in the columns for the standard weights used to weigh the stone.

Let’s now read from an “Explanation of Binary Arithmetic,” using a modified version of the Ching-Oxtoby
translation [3, p. 81–86].

An Explanation of Binary Arithmetic
Using only the Characters 0 and 1, with Remarks
about its Utility and the Meaning it Gives to the

Ancient Chinese Figures of Fuxi

By G.W. Leibniz

Ordinary arithmetical calculations are performed according to a progression of tens. We use ten
characters, which are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, that signify zero, one and the following numbers
up to nine, inclusive. After reaching ten, we begin again, writing ten with 10, and ten times ten
or one hundred with 100, and ten times one hundred or one thousand with 1000, and ten times
one thousand with 10000, and so on.

Exercise 2: Write the numbers 1, 10, 100, 1000 and 10000 as powers of ten. Express your answer in
complete sentences or with equations. What pattern do you notice in the exponents? (Question one
appears just before the excerpt from Leibniz).
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But instead of the progression by tens, I have already used for several years the simplest of all
progressions, that by twos, having found that this contributes to the perfection of the science of
numbers. Thus I use no characters other than 0 and 1, and then, reaching two, I begin again.
This is why two is written here as 10, and two times two or four as 100, and two times four or
eight as 1000, and two times eight or sixteen as 1000, and so on.

Exercise 3: Write the numbers 1, 2, 4, 8 and 16 as powers of two. Express your answer in complete
sentences or with equations. What pattern do you notice in the exponents? How do the exponents
compare with those in question 2? How does the progression by twos compare with the standard weights
in question 1?

Here is the Table of Numbers according to this pattern, which we can continue as far as we wish.

Exercise 4: Compare the entries from 1 to 15 in Leibniz’s “Table of Numbers”on the following page with
the table for weighing stones that you constructed previously in question 1. Today a number written only
with the characters 0 and 1 according to Leibniz’s “progression of twos” is said to be written in binary
notation, or base 2. Find the binary equivalents of the (base 10) numbers

34, 64, 100, 1015 .

Be sure to explain your work.

At a glance we see the reason for the famous property of the double geometric progression in whole
numbers, which states that given only one of these numbers in each degree, we can form all other
whole numbers below the double of the highest degree. Since, as we would say, for example, 111
or 7 is the sum of four, two and one, and that 1101 or 13 is the sum of eight, four and one.

1 0 0 4 1 0 0 0 8
1 0 2 1 0 0 4

1 1 1 1
1 1 1 7 1 1 0 1 13

This property is useful to investigators for weighing all kinds of masses with just a few weights or
could be used in monetary systems to provide a range of change with just a few coins.
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Table of Numbers
◦ ◦ ◦ ◦ ◦ 0 0
◦ ◦ ◦ ◦ ◦ 1 1
◦ ◦ ◦ ◦ 1 0 2
◦ ◦ ◦ ◦ 1 1 3
◦ ◦ ◦ 1 0 0 4
◦ ◦ ◦ 1 0 1 5
◦ ◦ ◦ 1 1 0 6
◦ ◦ ◦ 1 1 1 7
◦ ◦ 1 0 0 0 8
◦ ◦ 1 0 0 1 9
◦ ◦ 1 0 1 0 10
◦ ◦ 1 0 1 1 11
◦ ◦ 1 1 0 0 12
◦ ◦ 1 1 0 1 13
◦ ◦ 1 1 1 0 14
◦ ◦ 1 1 1 1 15
◦ 1 0 0 0 0 16
◦ 1 0 0 0 1 17
◦ 1 0 0 1 0 18
◦ 1 0 0 1 1 19
◦ 1 0 1 0 0 20
◦ 1 0 1 0 1 21
◦ 1 0 1 1 0 22
◦ 1 0 1 1 1 23
◦ 1 1 0 0 0 24
◦ 1 1 0 0 1 25
◦ 1 1 0 1 0 26
◦ 1 1 0 1 1 27
◦ 1 1 1 0 0 28
◦ 1 1 1 0 1 29
◦ 1 1 1 1 0 30
◦ 1 1 1 1 1 31
1 0 0 0 0 0 32

etc.

Exercise 5: Using modern notation, Leibniz’s “double geometric progression” or “progression by twos”
would be written 20, 21, 22, 23, . . . , 2n. Guess a simple formula for

20 + 21 + 22 + 23 + · · ·+ 2n

based on Leibniz’s verbal description “that given only one of these numbers in each degree,” we should
be able to achieve all whole numbers “below the double of the highest degree.” Prove that your guess is
correct using only algebra (addition and multiplication). Hint: Multiply (20 + 21 + 22 + 23 + · · ·+ 2n) by
1, where 1 is written as 2− 1.

Leibniz continues:

This expression of numbers, once established, facilitates all kinds of operations.

5



For example, addition (1)

1 1 0 6 1 0 1 5 1 1 1 0 14
1 1 1 7 1 0 1 1 11 1 0 0 0 1 17

. . . . . .
1 1 0 1 13 1 0 0 0 0 16 1 1 1 1 1 31

For subtraction

1 1 0 1 13 1 0 0 0 0 16 1 1 1 1 1 31
1 1 1 7 1 0 1 1 11 1 0 0 0 1 17
1 1 0 6 1 0 1 5 1 1 1 0 14

For multiplication (2)

1 1 3 1 0 1 5 1 0 1 5
1 1 3 1 1 3 1 0 1 5
1 1 1 0 1 1 0 1

1 1 1 0 1 1 0 1 0
. .

1 0 0 1 9 1 1 1 1 15 1 1 0 0 1 25

For division

15 6 1 6 1 1 1 1 0 1 5
3 6 1 6 1 6 1 1

6 1 1

All these operations are so easy that we shall never have to guess or apply trial and error, as we
must do in ordinary division. Nor do we need to learn anything by rote here, as must be done
in ordinary calculation, where, for example, it is necessary to know that 6 and 7 taken together
makes 13, and that 5 multiplied by 3 gives 15, following the so-called Pythagorean table1 that one
times one is one. But here everything is found and proven from the source, just as we see in the
preceding examples under the signs (1) and (2).

Exercise 6: Using your knowledge of base 10 addition, explain the examples of base 2 addition given
above by Leibniz. What is the likely meaning of the dot Leibniz includes in certain columns for addition?
Using binary arithmetic, compute 1101 + 1110, without converting these numbers to base 10. Explain
the examples for binary subtraction, multiplication and division above. Keep in mind that these should
be base 2 analogues of base 10 procedures. Since Leibniz’s example for division may be incomplete by
today’s standards, you may wish to supplement his work with additional steps, indicating clearly what
multiples of 3 are subtracted from 15 in base 2. Finally, using binary arithmetic, compute the following.

11010− 1101, (1101) · (11), 1101÷ 101 .

Be sure to explain your work. For the division problem, you may state what the remainder is in terms of
a binary whole number, without writing it as a fraction.

1This is likely a reference to the multiplication table.
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However, I am not at all recommending this manner of counting as a replacement for the ordinary
practice of tens. For aside from the fact that we are accustomed to this, there is no need to learn
what we have already memorized; the practice of tens is shorter, the numbers not as long. If we
were accustomed to proceed by twelves or by sixteens, there would be even more of an advantage.
As compensation for its length, however, calculation by twos, that is by 0 and by 1, is most basic
for science; it permits new discoveries which become useful even in the practice of arithmetic, and
especially in geometry, because when the numbers are reduced to the simplest principles, like 0
and 1, a wonderful order appears everywhere. For example, even in the Table of Numbers, we see
in each column those periods which always reappear. In the first column it is 01, in the second
0011, in the third 00001111, in the fourth 0000000011111111, and so on. Small zeroes are put
into the table to fill the void at the beginning of the column, and to mark these periods better.
Lines are also traced in the table indicating that what these lines enclose always reoccurs below
them. The square numbers, cubes and other powers, as well as the triangular numbers,2 pyramidal
numbers,3 and other figurate numbers, also have similar periods, so that one can immediately
write the tables without even calculating. A certain tedium at the beginning, which later serves to
spare us calculation and to allow us to go by rule infinitely far, is extremely advantageous.

What is surprising in this calculation is that this arithmetic of 0 and 1 contains the mystery of
lines of an ancient king and philosopher named Fuxi, who is believed to have lived more than
four thousand years ago and whom the Chinese regard as the founder of their empire and of their
sciences. There are several figures of lines that are attributed to him; they all go back to this
arithmetic. But it is enough to place here the so-called figures of the eight Cova [trigrams], which
are basic, and to add to these an explanation which is manifest, so that it is understood that a
whole line — signifies unity or one, and that a broken line – – signifies zero or 0.

– – — – – — – – — – – —
– – – – — — – – – – — —
– – – – – – – – — — — —
0 ↽ 0 ↽ 0 ↽ 0 ↽
0 0 ↽ ↽ 0 0 ↽ ↽
0 0 0 0 ↽ ↽ ↽ ↽

0 1 10 11 100 101 110 111

0 1 2 3 4 5 6 7

. . . [S]carcely two years ago I sent to the Reverend Father Bouvet, the famous French Jesuit living
in Peking, my manner of counting by 0 and 1, and it was all he needed to recognize that this holds
the key to Fuxi’s4 figures. So he wrote to me on November 14, 1701, sending me the great figure
of this princely philosopher which goes to 64. . . .

Although striking to Leibniz, the link between the 64 hexagrams of the Yijing and binary numeration
appears today as only an intellectual curiosity. The base two system did not provide a common origin to
Christianity and Confucianism, as Leibniz and Bouvet had sought.

The Electronic Age

John von Neumann (1903–1957) was a leading mathematician, physicist and engineer of the twentieth
century, having contributed significantly to the foundations of quantum mechanics, the development of

2The sequence 1, 3, 6, 10, 15, . . . , giving the number of dots in certain triangles [12, p. 49] forms the triangular numbers.
3The sequence 1, 4, 10, 20, 35, . . . , giving the number of dots in certain pyramids [19, p. 76] forms the pyramidal numbers.
4The mythical first Emperor of China.

7



the atomic bomb, and the logical structure of the electronic digital computer [8, 10]. Born in Budapest
Hungary, the young von Neumann showed a gift for mathematics, received a doctorate in the subject
from the University of Budapest and a degree in chemical engineering from the Eidgenössische Technis-
che Hochschule (Swiss Federal Polytechnic) in Zurich. He met the renowned David Hilbert (1862–1943)
on a visit to Göttingen in 1926, after which he was offered the position of a Privatdozent (an un-salaried
lecturer) at the University of Berlin and then at the University of Hamburg. In 1930 he visited the United
States, accepting a salaried lectureship at Princeton University, a move which would shape the rest of his
life.

Becoming a Professor of Mathematics at the prestigious Institute for Advanced Study (Princeton, New
Jersey) in 1933, von Neumann was able to devote his time to the study of analysis, continuous geometry,
fluid dynamics, wave propagation and differential equations. In 1943 he became a member of the Los
Alamos Laboratory and helped develop the atomic bomb. The particular problem he faced, the implosion
problem, was how to produce an extremely fast reaction in a small amount of the uranium isotope U235 in
order to cause a great amount of energy to be released. In conjunction with Seth Neddermeyer, Edward
Teller and James Tuck, this problem was solved with a high explosive lens designed to produce a spherical
shock wave to cause the implosion necessary to detonate the bomb. Von Neumann’s strength was his
ability to model theoretical phenomena mathematically and solve the resulting equations numerically [8,
p. 181], which required adroit skills in calculation.

Meanwhile in 1941 John William Mauchly (1907–1980), as a newly appointed Assistant Professor at the
University of Pennsylvania’s Moore School of Electrical Engineering, began discussions with graduate
student John Presper Eckert (1919–1995) and others about the possibility of an electronic digital com-
puting device that would be faster and more accurate than any existing machine, designed in part to meet
the computing needs of the Ballistics Research Laboratory (BRL) of the Army Ordnance Department in
Aberdeen, Maryland. With the help of mathematician and First Lieutenant Herman Goldstine (1913–),
Mauchly’s proposal for a high-speed vacuum-tube computer received funding from the BRL in 1943. The
device was dubbed the Electronic Numerical Integrator and Computer (ENIAC). Tested in late 1945, and
unveiled in 1946, the ENIAC was a behemoth containing 18,000 vacuum tubes and requiring 1,800 square
feet of floor space for the computer alone [15, p. 133]. Arithmetic on the ENIAC was performed using
the base 10 decimal system, requiring the ability to store ten different values for each digit of a numerical
quantity. The multiplication table for all digits between zero and nine was also stored on the machine.
The ENIAC was not programmable in the modern sense of a coded program, and contained no sub-unit
similar to a present-day compiler. To alter its function, i.e., to implement a different numerical algorithm,
external switches and cables had to be repositioned. Designs for a more robust machine may have been in
place as the ENIAC went into production, but the rush to meet the needs of the war effort took precedence.

By serendipity, in the summer of 1944 Goldstine met von Neumann at a railway station in Aberdeen,
both working on separate highly classified projects. Goldstine writes: “Prior to that time I had never met
this great mathematician, but I knew much about him of course and had heard him lecture on several
occasions” [8, p. 182]. After a discussion of the computing power of the ENIAC, von Neumann became
keenly interested in this machine, and in late 1945 tested it on computations needed for the design of the
hydrogen bomb. Von Neumann quickly became involved with the logical structure of the next genera-
tion of computing machinery, the Electronic Discrete Variable Automatic Computer (EDVAC), designed
around the “stored program” concept. The instructions of an algorithm could be stored electronically on
the EDVAC and then executed in sequential order. In this way, von Neumann had outlined a “universal
computing machine” in the sense of Alan Turing (1912–1954), with the universal character referring to
the machine’s ability to execute any algorithmic procedure that could be reduced to simple logical steps.
Turing first introduced a logical description of his universal computing machine in 1936 [17] as the so-
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lution to a problem posed by David Hilbert. Von Neumann, who had studied logic early in his career,
was certainly aware of Turing’s work, and in 1938 had offered Turing an assistantship at the Institute
for Advanced Study [8, p. 271]. In 1945 von Neumann issued his white paper “First Draft of a Report
on the EDVAC” [18] under the auspices of the University of Pennsylvania and the United States Army
Ordnance Department. Although this draft was never revised, the ideas therein soon became known as
von Neumann architecture in computer design. Let’s read a few excerpts from this paper [18] related to
binary arithmetic.

First Draft of a Report on the EDVAC

2.2 First: Since the device is primarily a computer, it will have to perform the elementary operations
of arithmetic most frequently. There are addition, subtraction, multiplication and division: +, −,
×, ÷. It is therefore reasonable that it should contain specialized organs for just these operations.
At any rate a central arithmetical part of the device will probably have to exist, and this constitutes
the first specific part: CA.

4.3 It is clear that a very high speed computing device should ideally have vacuum tube elements.
Vacuum tube aggregates like counters and scalers have been used and found reliable at reaction
times (synaptic delays) as short as a microsecond ( = 10−6 seconds).

5.1 Let us now consider certain functions of the first specific part: the central arithmetical part
CA.

The element in the sense of 4.3, the vacuum tube used as a current valve or gate, is an all-or-none
device, or at least it approximates one: According to whether the grid bias is above or below cut-off;
it will pass current or not. It is true that it needs definite potentials on all its electrodes in order to
maintain either state, but there are combinations of vacuum tubes which have perfect equilibria:
Several states in each of which the combination can exist indefinitely, without any outside support,
while appropriate outside stimuli (electric pulses) will transfer it from one equilibrium into another.
These are the so called trigger circuits, the basic one having two equilibria. The trigger circuits
with more than two equilibria are disproportionately more involved.

Thus, whether the tubes are used as gates or as triggers, the all-or-none, two equilibrium arrange-
ments are the simplest ones. Since these tube arrangements are to handle numbers by means of
their digits, it is natural to use a system of arithmetic in which the digits are also two valued. This
suggests the use of the binary system.

5.2 A consistent use of the binary system is also likely to simplify the operations of multiplication
and division considerably. Specifically it does away with the decimal multiplication table. In
other words: Binary arithmetic has a simpler and more one-piece logical structure than any other,
particularly than the decimal5 one.

Exercise 7: Let a and b denote binary variables with one digit each. Using only the logical connectives ∧
(and), ∨ (or) and ∼ (not), find a logical expression which gives the digit in the ones place (the right-hand
digit) of a + b. Find a logical expression which gives the digit in the twos place (the left-hand digit) of
a + b. Explain your answer.

5base 10
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Extra Credit A: Find a pattern in the binary representation of the square numbers 1, 4, 9, 16, 25, . . .
Leibniz claims to have found such patterns.

Extra Credit B: If in question 1 of the main project, standard weights can be placed on both sides of
the balance, what four standard weights should be used in order to weigh all stones of integral weight
between 1 and 40 inclusive?

Overview of LATEX Required

This project will allow you to expand on the experiences of working with LATEX in your first project. You
may need a few commands outside of the normal ones we’ve discussed in class. A selection of binary
operation symbols are provided below.

≤ \leq ≥ \geq ≡ \equiv |= \models

≺ \prec � \succ ∼ \sim ⊥ \perp

� \preceq � \succeq ' \simeq | \mid

� \ll � \gg � \asymp ‖ \parallel

⊂ \subset ⊃ \supset ≈ \approx ./ \bowtie

⊆ \subseteq ⊇ \supseteq ∼= \cong on \Join

@ \sqsubsetb A \sqsupset 6= \neq ^ \smile

v \sqsubseteq w \sqsupseteq
.
= \doteq _ \frown

∈ \in 3 \ni ∝ \propto = =

` \vdash a \dashv < < > >

: :

In addition to these symbols you will probably need to take a moment to read up on the formatting
and creating of tables in LATEX. A very nice guide on this subject can be found at en.wikibooks.org/

wiki/LaTeX/Tables. I recommend using the booktabs package discussed at the bottom of the website.
Another nice resource for working with LATEX can be found at http://www.artofproblemsolving.com/
Wiki/index.php/LaTeX:About. Don’t forget that you can also reference the “Getting Started in LATEX.”
video tutorial on the course blog. A copy of the TEX code for this document is available upon request.
If you have any questions about the project or using LATEX, feel free to comment in the associated LATEX
Writing Assignment blog post. (This way other people having the same questions can see your questions,
and hopefully my, or other students’, answers.)
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