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The Number Derivative

Theorem (Prime Factorization Theorem)

All positive integers n ≥ 2 can be written as n =

k∏
i=1

pxi
i for distinct primes p

and positive integers x. This factorization is unique up to order.

Definition (Ufranovski, 2)

Number Derivative:

If n =

k∏
i=1

pxi
i , then n′ =

k∑
i=1

n

(
xi
pi

)
Properties of the Number Derivative:

1 1′ = 0

2 p′ = 1, ∀p ∈ primes
3 (ab)′ = a′b+ ab′, ∀a, b ∈ Z+ (Product Rule)
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Examples and Domains

Example

6′

= (2 · 3)′ = 2′ · 3 + 2 · 3′ = (1) · (3) + (2) · (1) = 3 + 2 = 5

Example

45′ = (32 · 5)′ = 32 · 5
(
2

3
+

1

5

)
= 2 · 3 · 5 + 32 = 30 + 9 = 39

Extension From Z+ → Z
If we define (−1)′ = 0, then our definition of the number derivative can be
extended to the domain of integers.

Example

(−6)′ = (−1 · 6)′ = (−1)′ · 6 + 6′ · (−1) = −(6′) = −5
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Examples and Domains

Extension From Z→ Q
Recall the definition:

If n =
k∏

i=1

pxi
i , then n′ =

k∑
i=1

n

(
xi

pi

)
Let us allow our xi to assume negative integer values.

Example (
10

9

)′
=
(
2 · 5 · 3−2)′

=
(
2 · 5 · 3−2) · (1

2
+

1

5
+
−2
3

)
=

5

9
+

2

9
− 20

27

=
1

27
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Examples and Domains

Extension to I
We can again redefine our definition to now allow our xi to assume fractional
values. 2(1/2) =

√
2 is such an irrational number.

Example(
2(3/4)

)′
= 2(3/4) ·

(
3/4

2

)
= 2(3/4) · 3

8
= 2(3/4) · 2−3 · 3 = 2(−9/4) · 3
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Applications on Z+

Number Differential Equations (NDEs):

1 n′ = 1, n = p

These solutions come directly from the properties we defined. But they also
happen to be uniquely prime.

2 n′ = n, n = pp

Notice that (pp)′ = pp ·
(
p

p

)
= pp.

3 n′ = 2b, (Goldbach Conjecture)

The Goldbach Conjecture states that every even number greater than 3 is the
sum of two primes. So for two primes p and q, if there are solutions of type
n = pq for every b > 1, then the Goldbach Conjecture holds. (Ufranovski, 6)

4 n′′ = 1, (Twin Primes Conjecture)

The Twin Primes Conjecture states that there are infinitely many prime pairs of
the type p, p+ 2. So if n = 2p, n′ = p+ 2, and thus if there are infinitely many
solutions to (2p)′′ = 1, then the Twin Primes Conjecture holds. (Ufranovski, 10)
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Matrix Representation

Consider an arbitrary factorization of a positive integer n. Then

n =

k∏
i=1

pxi
i

This is analogous to the k × k determinant of the diagonal matrix of the form:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

px1
1 0 0 0 · · · 0

0 px2
2 0 0 · · · 0

0 0 px3
3 0 · · · 0

0 0 0 px4
4 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · pxk

k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Since this matrix is diagonal the determinant of this matrix takes the same form
as our factorization above.
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Matrix Representation

If we extend this analogy to the number derivative,

n′ =

k∑
i=1

n

(
xi
pi

)

we can show that the number derivative can be recast as the determinant of the
arrowhead matrix below:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 · px1−1
1 x2 · px2−1

2 x3 · px3−1
3 x4 · px4−1

4 · · · xk · pxk−1
k

−px1
1 px2

2 0 0 · · · 0

−px1
1 0 px3

3 0 · · · 0

−px1
1 0 0 px4

4 · · · 0

...
...

...
...

. . .
...

−px1
1 0 0 0 · · · pxk

k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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. . .
...

−px1
1 0 0 0 · · · pxk

k
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Matrix Representation

If we extend this analogy to the number derivative,

n′ =

k∑
i=1

n

(
xi
pi

)
we can show that the number derivative can be recast as the determinant of the
arrowhead matrix below:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 · px1−1
1 x2 · px2−1

2 x3 · px3−1
3 x4 · px4−1

4 · · · xk · pxk−1
k

−px1
1 px2

2 0 0 · · · 0

−px1
1 0 px3

3 0 · · · 0

−px1
1 0 0 px4

4 · · · 0

...
...

...
...

. . .
...

−px1
1 0 0 0 · · · pxk

k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Adam Simpson Investigations of the Number Derivative



Proof of the 2× 2 Case

Consider a number n having only two prime factors, i.e. n = px1
1 p

x2
2 . We must

show that our determinant gives us the same result when applying the product
rule to this factorization, namely,

n′ = x1p
x1−1
1 p2 + x2p

x1−1
2 p1.

∣∣∣∣∣∣
x1p

x1−1
1 x2p

x2−1
2

−px1
1 px2

2

∣∣∣∣∣∣

= x1p
x1−1
1 p2 + x2p

x1−1
2 p1
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Proof of the 3× 3 Case

Factorization:
n = px1

1 p
x2
2 p

x3
3 =⇒ n′ = x1p

x1−1
1 px2

2 p
x3
3 + x2p

x2−1
2 px1

1 p
x3
3 + x3p

x3−1
3 px1

1 p
x2
2

∣∣∣∣∣∣∣
x1p

x1−1
1 x2p

x2−1
2 x3p

x3−1
3

−px1
1 px2

2 0

−px1
1 0 px3

3

∣∣∣∣∣∣∣ = x1p
x1−1
1 px2

2 p
x3
3
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Inductive Step

Factorization: n = px1
1 px2

2 · · · p
xk
k

We assume that the result holds for the above factorization, and we proceed by
induction on k. Consider the case for k + 1. We want to show that(

n · pxk+1

k+1

)′
= n′ · pxk+1

k+1 + n · xk+1p
xk+1−1

k+1 .

Consider the matrix representation for an n′ with k + 1 prime factors shown below:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 · px1−1
1 x2 · px2−1

2 x3 · px3−1
3 x4 · px4−1

4 · · · xk · pxk−1
k xk+1 · p

xk+1−1

k+1

−px1
1 px2

2 0 0 · · · 0 0

−px1
1 0 px3

3 0 · · · 0 0

−px1
1 0 0 px4

4 · · · 0 0

...
...

...
...

. . .
...

...

−px1
1 0 0 0 · · · p

xk
k 0

−px1
1 0 0 0 · · · 0 p

xk+1
k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Future Areas of Research

(1) Investigate properties of our determinant representation for the number
derivative on Zn.

(2) Investigate orbits of numbers with stable factors under Zn,

108 = 22 · 33 : 108→ 108 · 2→ 108 · 5→ 108 · 11→ 108 · 23→ . . .

432 = 22 · 22 · 33 : 432→ 432 · 3→ 432 · 10→ 432 · 37→ 432 · 112→ . . .

(3) Extending the definition of the number derivative to complex domains.

(4) Solving second order eigenvalue problems for NDEs, i.e. n′′ = λn

Questions?
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