# Investigations of the Number Derivative 

Adam Simpson

Texas Section of the MAA
April 12, 2012


Abilene
CHRISTIAN
UNIVERSITY

The Number Derivative

## Theorem (Prime Factorization Theorem)

All positive integers $n \geq 2$ can be written as $n=\prod_{i=1}^{k} p_{i}^{x_{i}}$ for distinct primes $p$ and positive integers $x$. This factorization is unique up to order.

## The Number Derivative

## Theorem (Prime Factorization Theorem)

All positive integers $n \geq 2$ can be written as $n=\prod_{i=1}^{k} p_{i}^{x_{i}}$ for distinct primes $p$ and positive integers $x$. This factorization is unique up to order.

## Definition (Ufranovski, 2)

Number Derivative:
If $n=\prod_{i=1}^{k} p_{i}^{x_{i}}$, then $n^{\prime}=\sum_{i=1}^{k} n\left(\frac{x_{i}}{p_{i}}\right)$

## The Number Derivative

## Theorem (Prime Factorization Theorem)

All positive integers $n \geq 2$ can be written as $n=\prod_{i=1}^{k} p_{i}^{x_{i}}$ for distinct primes $p$ and positive integers $x$. This factorization is unique up to order.

## Definition (Ufranovski, 2)

Number Derivative:
If $n=\prod_{i=1}^{k} p_{i}^{x_{i}}$, then $n^{\prime}=\sum_{i=1}^{k} n\left(\frac{x_{i}}{p_{i}}\right)$
Properties of the Number Derivative:

## The Number Derivative

## Theorem (Prime Factorization Theorem)

All positive integers $n \geq 2$ can be written as $n=\prod_{i=1}^{k} p_{i}^{x_{i}}$ for distinct primes $p$ and positive integers $x$. This factorization is unique up to order.

## Definition (Ufranovski, 2)

Number Derivative:
If $n=\prod_{i=1}^{k} p_{i}^{x_{i}}$, then $n^{\prime}=\sum_{i=1}^{k} n\left(\frac{x_{i}}{p_{i}}\right)$
Properties of the Number Derivative:
(1) $1^{\prime}=0$

## The Number Derivative

## Theorem (Prime Factorization Theorem)

All positive integers $n \geq 2$ can be written as $n=\prod_{i=1}^{k} p_{i}^{x_{i}}$ for distinct primes $p$ and positive integers $x$. This factorization is unique up to order.

## Definition (Ufranovski, 2)

Number Derivative:
If $n=\prod_{i=1}^{k} p_{i}^{x_{i}}$, then $n^{\prime}=\sum_{i=1}^{k} n\left(\frac{x_{i}}{p_{i}}\right)$
Properties of the Number Derivative:
(1) $1^{\prime}=0$
(2) $p^{\prime}=1, \quad \forall p \in$ primes

## The Number Derivative

## Theorem (Prime Factorization Theorem)

All positive integers $n \geq 2$ can be written as $n=\prod_{i=1}^{k} p_{i}^{x_{i}}$ for distinct primes $p$ and positive integers $x$. This factorization is unique up to order.

## Definition (Ufranovski, 2)

Number Derivative:
If $n=\prod_{i=1}^{k} p_{i}^{x_{i}}$, then $n^{\prime}=\sum_{i=1}^{k} n\left(\frac{x_{i}}{p_{i}}\right)$
Properties of the Number Derivative:
(1) $1^{\prime}=0$
(2) $p^{\prime}=1, \quad \forall p \in$ primes
(3) $(a b)^{\prime}=a^{\prime} b+a b^{\prime}, \quad \forall a, b \in \mathbb{Z}^{+}$(Product Rule)

## Examples and Domains

## Examples and Domains

## Example <br> $6^{\prime}=(2 \cdot 3)^{\prime}$

## Examples and Domains

## Example <br> $6^{\prime}=(2 \cdot 3)^{\prime}=2^{\prime} \cdot 3+2 \cdot 3^{\prime}$

## Examples and Domains

## Example <br> $6^{\prime}=(2 \cdot 3)^{\prime}=2^{\prime} \cdot 3+2 \cdot 3^{\prime}=(1) \cdot(3)+(2) \cdot(1)$

## Examples and Domains

## Example <br> $6^{\prime}=(2 \cdot 3)^{\prime}=2^{\prime} \cdot 3+2 \cdot 3^{\prime}=(1) \cdot(3)+(2) \cdot(1)=3+2=5$

## Examples and Domains

## Example

$$
6^{\prime}=(2 \cdot 3)^{\prime}=2^{\prime} \cdot 3+2 \cdot 3^{\prime}=(1) \cdot(3)+(2) \cdot(1)=3+2=5
$$

## Example

$$
45^{\prime}=\left(3^{2} \cdot 5\right)^{\prime}
$$

## Examples and Domains

## Example

$$
6^{\prime}=(2 \cdot 3)^{\prime}=2^{\prime} \cdot 3+2 \cdot 3^{\prime}=(1) \cdot(3)+(2) \cdot(1)=3+2=5
$$

## Example

$$
45^{\prime}=\left(3^{2} \cdot 5\right)^{\prime}=3^{2} \cdot 5\left(\frac{2}{3}+\frac{1}{5}\right)
$$

## Examples and Domains

## Example

$$
6^{\prime}=(2 \cdot 3)^{\prime}=2^{\prime} \cdot 3+2 \cdot 3^{\prime}=(1) \cdot(3)+(2) \cdot(1)=3+2=5
$$

## Example

$$
45^{\prime}=\left(3^{2} \cdot 5\right)^{\prime}=3^{2} \cdot 5\left(\frac{2}{3}+\frac{1}{5}\right)=2 \cdot 3 \cdot 5+3^{2}
$$

## Examples and Domains

## Example

$$
6^{\prime}=(2 \cdot 3)^{\prime}=2^{\prime} \cdot 3+2 \cdot 3^{\prime}=(1) \cdot(3)+(2) \cdot(1)=3+2=5
$$

## Example

$$
45^{\prime}=\left(3^{2} \cdot 5\right)^{\prime}=3^{2} \cdot 5\left(\frac{2}{3}+\frac{1}{5}\right)=2 \cdot 3 \cdot 5+3^{2}=30+9=39
$$

## Examples and Domains

## Example

$6^{\prime}=(2 \cdot 3)^{\prime}=2^{\prime} \cdot 3+2 \cdot 3^{\prime}=(1) \cdot(3)+(2) \cdot(1)=3+2=5$

## Example

$$
45^{\prime}=\left(3^{2} \cdot 5\right)^{\prime}=3^{2} \cdot 5\left(\frac{2}{3}+\frac{1}{5}\right)=2 \cdot 3 \cdot 5+3^{2}=30+9=39
$$

## Extension From $\mathbb{Z}^{+} \rightarrow \mathbb{Z}$

If we define $(-1)^{\prime}=0$, then our definition of the number derivative can be extended to the domain of integers.

## Examples and Domains

## Example

$6^{\prime}=(2 \cdot 3)^{\prime}=2^{\prime} \cdot 3+2 \cdot 3^{\prime}=(1) \cdot(3)+(2) \cdot(1)=3+2=5$

## Example

$$
45^{\prime}=\left(3^{2} \cdot 5\right)^{\prime}=3^{2} \cdot 5\left(\frac{2}{3}+\frac{1}{5}\right)=2 \cdot 3 \cdot 5+3^{2}=30+9=39
$$

## Extension From $\mathbb{Z}^{+} \rightarrow \mathbb{Z}$

If we define $(-1)^{\prime}=0$, then our definition of the number derivative can be extended to the domain of integers.

## Example

$(-6)^{\prime}=(-1 \cdot 6)^{\prime}$

## Examples and Domains

## Example

$6^{\prime}=(2 \cdot 3)^{\prime}=2^{\prime} \cdot 3+2 \cdot 3^{\prime}=(1) \cdot(3)+(2) \cdot(1)=3+2=5$

## Example

$$
45^{\prime}=\left(3^{2} \cdot 5\right)^{\prime}=3^{2} \cdot 5\left(\frac{2}{3}+\frac{1}{5}\right)=2 \cdot 3 \cdot 5+3^{2}=30+9=39
$$

## Extension From $\mathbb{Z}^{+} \rightarrow \mathbb{Z}$

If we define $(-1)^{\prime}=0$, then our definition of the number derivative can be extended to the domain of integers.

## Example

$(-6)^{\prime}=(-1 \cdot 6)^{\prime}=(-1)^{\prime} \cdot 6+6^{\prime} \cdot(-1)$

## Examples and Domains

## Example

$6^{\prime}=(2 \cdot 3)^{\prime}=2^{\prime} \cdot 3+2 \cdot 3^{\prime}=(1) \cdot(3)+(2) \cdot(1)=3+2=5$

## Example

$$
45^{\prime}=\left(3^{2} \cdot 5\right)^{\prime}=3^{2} \cdot 5\left(\frac{2}{3}+\frac{1}{5}\right)=2 \cdot 3 \cdot 5+3^{2}=30+9=39
$$

## Extension From $\mathbb{Z}^{+} \rightarrow \mathbb{Z}$

If we define $(-1)^{\prime}=0$, then our definition of the number derivative can be extended to the domain of integers.

## Example

$(-6)^{\prime}=(-1 \cdot 6)^{\prime}=(-1)^{\prime} \cdot 6+6^{\prime} \cdot(-1)=-\left(6^{\prime}\right)$

## Examples and Domains

## Example

$6^{\prime}=(2 \cdot 3)^{\prime}=2^{\prime} \cdot 3+2 \cdot 3^{\prime}=(1) \cdot(3)+(2) \cdot(1)=3+2=5$

## Example

$$
45^{\prime}=\left(3^{2} \cdot 5\right)^{\prime}=3^{2} \cdot 5\left(\frac{2}{3}+\frac{1}{5}\right)=2 \cdot 3 \cdot 5+3^{2}=30+9=39
$$

## Extension From $\mathbb{Z}^{+} \rightarrow \mathbb{Z}$

If we define $(-1)^{\prime}=0$, then our definition of the number derivative can be extended to the domain of integers.

## Example

$(-6)^{\prime}=(-1 \cdot 6)^{\prime}=(-1)^{\prime} \cdot 6+6^{\prime} \cdot(-1)=-\left(6^{\prime}\right)=-5$

## Examples and Domains

## Extension From $\mathbb{Z} \rightarrow \mathbb{Q}$

Recall the definition:
If $n=\prod_{i=1}^{k} p_{i}^{x_{i}}$, then $n^{\prime}=\sum_{i=1}^{k} n\left(\frac{x_{i}}{p_{i}}\right)$
Let us allow our $x_{i}$ to assume negative integer values.

## Examples and Domains

## Extension From $\mathbb{Z} \rightarrow \mathbb{Q}$

Recall the definition:
If $n=\prod_{i=1}^{k} p_{i}^{x_{i}}$, then $n^{\prime}=\sum_{i=1}^{k} n\left(\frac{x_{i}}{p_{i}}\right)$
Let us allow our $x_{i}$ to assume negative integer values.

## Example

$$
\begin{aligned}
\left(\frac{10}{9}\right)^{\prime} & =\left(2 \cdot 5 \cdot 3^{-2}\right)^{\prime} \\
& =\left(2 \cdot 5 \cdot 3^{-2}\right) \cdot\left(\frac{1}{2}+\frac{1}{5}+\frac{-2}{3}\right) \\
& =\frac{5}{9}+\frac{2}{9}-\frac{20}{27} \\
& =\frac{1}{27}
\end{aligned}
$$

## Examples and Domains

## Extension to $\mathbb{I}$

We can again redefine our definition to now allow our $x_{i}$ to assume fractional values. $2^{(1 / 2)}=\sqrt{2}$ is such an irrational number.

## Examples and Domains

## Extension to $\mathbb{I}$

We can again redefine our definition to now allow our $x_{i}$ to assume fractional values. $2^{(1 / 2)}=\sqrt{2}$ is such an irrational number.

## Example

$\left(2^{\left(2^{649}\right)}\right)^{\prime}$

## Examples and Domains

## Extension to $\mathbb{I}$

We can again redefine our definition to now allow our $x_{i}$ to assume fractional values. $2^{(1 / 2)}=\sqrt{2}$ is such an irrational number.

## Example

$\left(2^{(3 / 4)}\right)^{\prime}=2^{(3 / 4)} \cdot\left(\frac{3 / 4}{2}\right)$

## Examples and Domains

## Extension to $\mathbb{I}$

We can again redefine our definition to now allow our $x_{i}$ to assume fractional values. $2^{(1 / 2)}=\sqrt{2}$ is such an irrational number.

## Example

$$
\left(2^{(3 / 4)}\right)^{\prime}=2^{(3 / 4)} \cdot\left(\frac{3 / 4}{2}\right)=2^{(3 / 4)} \cdot \frac{3}{8}
$$

## Examples and Domains

## Extension to $\mathbb{I}$

We can again redefine our definition to now allow our $x_{i}$ to assume fractional values. $2^{(1 / 2)}=\sqrt{2}$ is such an irrational number.

## Example

$\left(2^{(3 / 4)}\right)^{\prime}=2^{(3 / 4)} \cdot\left(\frac{3 / 4}{2}\right)=2^{(3 / 4)} \cdot \frac{3}{8}=2^{(3 / 4)} \cdot 2^{-3} \cdot 3$

## Examples and Domains

## Extension to $\mathbb{I}$

We can again redefine our definition to now allow our $x_{i}$ to assume fractional values. $2^{(1 / 2)}=\sqrt{2}$ is such an irrational number.

## Example

$\left(2^{(3 / 4)}\right)^{\prime}=2^{(3 / 4)} \cdot\left(\frac{3 / 4}{2}\right)=2^{(3 / 4)} \cdot \frac{3}{8}=2^{(3 / 4)} \cdot 2^{-3} \cdot 3=2^{(-9 / 4)} \cdot 3$

## Applications on $\mathbb{Z}^{+}$

## Applications on $\mathbb{Z}^{+}$

Number Differential Equations (NDEs):

## Applications on $\mathbb{Z}^{+}$

Number Differential Equations (NDEs):
(1) $n^{\prime}=1, \quad n=p$

These solutions come directly from the properties we defined. But they also happen to be uniquely prime.

## Applications on $\mathbb{Z}^{+}$

Number Differential Equations (NDEs):
(1) $n^{\prime}=1, \quad n=p$

These solutions come directly from the properties we defined. But they also happen to be uniquely prime.
(2) $n^{\prime}=n, \quad n=p^{p}$

Notice that $\left(p^{p}\right)^{\prime}=p^{p} \cdot\left(\frac{p}{p}\right)=p^{p}$.

## Applications on $\mathbb{Z}^{+}$

Number Differential Equations (NDEs):
(1) $n^{\prime}=1, \quad n=p$

These solutions come directly from the properties we defined. But they also happen to be uniquely prime.
(2) $n^{\prime}=n, \quad n=p^{p}$

Notice that $\left(p^{p}\right)^{\prime}=p^{p} \cdot\left(\frac{p}{p}\right)=p^{p}$.
(3) $n^{\prime}=2 b, \quad$ (Goldbach Conjecture)

The Goldbach Conjecture states that every even number greater than 3 is the sum of two primes. So for two primes $p$ and $q$, if there are solutions of type $n=p q$ for every $b>1$, then the Goldbach Conjecture holds. (Ufranovski, 6)

## Applications on $\mathbb{Z}^{+}$

Number Differential Equations (NDEs):
(1) $n^{\prime}=1, \quad n=p$

These solutions come directly from the properties we defined. But they also happen to be uniquely prime.
(2) $n^{\prime}=n, \quad n=p^{p}$

Notice that $\left(p^{p}\right)^{\prime}=p^{p} \cdot\left(\frac{p}{p}\right)=p^{p}$.
(3) $n^{\prime}=2 b, \quad$ (Goldbach Conjecture)

The Goldbach Conjecture states that every even number greater than 3 is the sum of two primes. So for two primes $p$ and $q$, if there are solutions of type $n=p q$ for every $b>1$, then the Goldbach Conjecture holds. (Ufranovski, 6)
(a) $n^{\prime \prime}=1, \quad$ (Twin Primes Conjecture)

The Twin Primes Conjecture states that there are infinitely many prime pairs of the type $p, p+2$. So if $n=2 p, n^{\prime}=p+2$, and thus if there are infinitely many solutions to $(2 p)^{\prime \prime}=1$, then the Twin Primes Conjecture holds. (Ufranovski, 10)

## Matrix Representation

Consider an arbitrary factorization of a positive integer $n$. Then

$$
n=\prod_{i=1}^{k} p_{i}^{x_{i}}
$$

## Matrix Representation

Consider an arbitrary factorization of a positive integer $n$. Then

$$
n=\prod_{i=1}^{k} p_{i}^{x_{i}}
$$

This is analogous to the $k \times k$ determinant of the diagonal matrix of the form:

$$
\left|\begin{array}{cccccc}
p_{1}^{x_{1}} & 0 & 0 & 0 & \cdots & 0 \\
0 & p_{2}^{x_{2}} & 0 & 0 & \cdots & 0 \\
0 & 0 & p_{3}^{x_{3}} & 0 & \cdots & 0 \\
0 & 0 & 0 & p_{4}^{x_{4}} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & p_{k}^{x_{k}}
\end{array}\right|
$$

## Matrix Representation

Consider an arbitrary factorization of a positive integer $n$. Then

$$
n=\prod_{i=1}^{k} p_{i}^{x_{i}}
$$

This is analogous to the $k \times k$ determinant of the diagonal matrix of the form:
$\left|\begin{array}{cccccc}p_{1}^{x_{1}} & 0 & 0 & 0 & \cdots & 0 \\ 0 & p_{2}^{x_{2}} & 0 & 0 & \cdots & 0 \\ 0 & 0 & p_{3}^{x_{3}} & 0 & \cdots & 0 \\ 0 & 0 & 0 & p_{4}^{x_{4}} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & p_{k}^{x_{k}}\end{array}\right|$

Since this matrix is diagonal the determinant of this matrix takes the same form as our factorization above.

## Matrix Representation

If we extend this analogy to the number derivative,

$$
n^{\prime}=\sum_{i=1}^{k} n\left(\frac{x_{i}}{p_{i}}\right)
$$

## Matrix Representation

If we extend this analogy to the number derivative,

$$
n^{\prime}=\sum_{i=1}^{k} n\left(\frac{x_{i}}{p_{i}}\right)
$$

we can show that the number derivative can be recast as the determinant of the arrowhead matrix below:

## Matrix Representation

If we extend this analogy to the number derivative,

$$
n^{\prime}=\sum_{i=1}^{k} n\left(\frac{x_{i}}{p_{i}}\right)
$$

we can show that the number derivative can be recast as the determinant of the arrowhead matrix below:
$\left|\begin{array}{cccccc}x_{1} \cdot p_{1}^{x_{1}-1} & x_{2} \cdot p_{2}^{x_{2}-1} & x_{3} \cdot p_{3}^{x_{3}-1} & x_{4} \cdot p_{4}^{x_{4}-1} & \cdots & x_{k} \cdot p_{k}^{x_{k}-1} \\ -p_{1}^{x_{1}} & p_{2}^{x_{2}} & 0 & 0 & \ldots & 0 \\ -p_{1}^{x_{1}} & 0 & p_{3}^{x_{3}} & 0 & \cdots & 0 \\ -p_{1}^{x_{1}} & 0 & 0 & p_{4}^{x_{4}} & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -p_{1}^{x_{1}} & 0 & 0 & 0 & \cdots & p_{k}^{x_{k}}\end{array}\right|$

## Proof of the $2 \times 2$ Case

Consider a number $n$ having only two prime factors, i.e. $n=p_{1}^{x_{1}} p_{2}^{x_{2}}$. We must show that our determinant gives us the same result when applying the product rule to this factorization, namely,

$$
n^{\prime}=x_{1} p_{1}^{x_{1}-1} p_{2}+x_{2} p_{2}^{x_{1}-1} p_{1}
$$

## Proof of the $2 \times 2$ Case

Consider a number $n$ having only two prime factors, i.e. $n=p_{1}^{x_{1}} p_{2}^{x_{2}}$. We must show that our determinant gives us the same result when applying the product rule to this factorization, namely,

$$
n^{\prime}=x_{1} p_{1}^{x_{1}-1} p_{2}+x_{2} p_{2}^{x_{1}-1} p_{1}
$$

$$
\left|\begin{array}{cc}
x_{1} p_{1}^{x_{1}-1} & x_{2} p_{2}^{x_{2}-1} \\
-p_{1}^{x_{1}} & p_{2}^{x_{2}}
\end{array}\right|
$$

## Proof of the $2 \times 2$ Case

Consider a number $n$ having only two prime factors, i.e. $n=p_{1}^{x_{1}} p_{2}^{x_{2}}$. We must show that our determinant gives us the same result when applying the product rule to this factorization, namely,

$$
n^{\prime}=x_{1} p_{1}^{x_{1}-1} p_{2}+x_{2} p_{2}^{x_{1}-1} p_{1}
$$

$$
\left|\begin{array}{cc}
x_{1} p_{1}^{x_{1}-1} & x_{2} p_{2}^{x_{2}-1} \\
-p_{1}^{x_{1}} & p_{2}^{x_{2}}
\end{array}\right|=x_{1} p_{1}^{x_{1}-1} p_{2}+x_{2} p_{2}^{x_{1}-1} p_{1}
$$

## Proof of the $3 \times 3$ Case

## Factorization:

$n=p_{1}^{x_{1}} p_{2}^{x_{2}} p_{3}^{x_{3}} \Longrightarrow n^{\prime}=x_{1} p_{1}^{x_{1}-1} p_{2}^{x_{2}} p_{3}^{x_{3}}+x_{2} p_{2}^{x_{2}-1} p_{1}^{x_{1}} p_{3}^{x_{3}}+x_{3} p_{3}^{x_{3}-1} p_{1}^{x_{1}} p_{2}^{x_{2}}$

$$
\left|\begin{array}{ccc}
x_{1} p_{1}^{x_{1}-1} & x_{2} p_{2}^{x_{2}-1} & x_{3} p_{3}^{x_{3}-1} \\
-p_{1}^{x_{1}} & p_{2}^{x_{2}} & 0 \\
-p_{1}^{x_{1}} & 0 & p_{3}^{x_{3}}
\end{array}\right|=
$$

## Proof of the $3 \times 3$ Case

## Factorization:

$n=p_{1}^{x_{1}} p_{2}^{x_{2}} p_{3}^{x_{3}} \Longrightarrow n^{\prime}=x_{1} p_{1}^{x_{1}-1} p_{2}^{x_{2}} p_{3}^{x_{3}}+x_{2} p_{2}^{x_{2}-1} p_{1}^{x_{1}} p_{3}^{x_{3}}+x_{3} p_{3}^{x_{3}-1} p_{1}^{x_{1}} p_{2}^{x_{2}}$

$$
\left|\begin{array}{ccc}
x_{1} p_{1}^{x_{1}-1} & 0 \\
-p_{1} & p_{2}^{x_{2}} & 0 \\
& 0 & p_{3}^{x_{3}}
\end{array}\right|=x_{1} p_{1}^{x_{1}-1} p_{2}^{x_{2}} p_{3}^{x_{3}}
$$

## Proof of the $3 \times 3$ Case

## Factorization:

$$
n=p_{1}^{x_{1}} p_{2}^{x_{2}} p_{3}^{x_{3}} \Longrightarrow n^{\prime}=x_{1} p_{1}^{x_{1}-1} p_{2}^{x_{2}} p_{3}^{x_{3}}+x_{2} p_{2}^{x_{2}-1} p_{1}^{x_{1}} p_{3}^{x_{3}}+x_{3} p_{3}^{x_{3}-1} p_{1}^{x_{1}} p_{2}^{x_{2}}
$$

$$
\left|\begin{array}{ccc}
x_{1} p_{1} & x_{2} p_{2}^{x_{2}-1} & 0 \\
-p_{1}^{x_{1}} & p_{2} & 0 \\
-p_{1}^{x_{1}} & 0 & p_{3}^{x_{3}}
\end{array}\right|=x_{1} p_{1}^{x_{1}-1} p_{2}^{x_{2}} p_{3}^{x_{3}}
$$

$$
+x_{2} p_{2}^{x_{2}-1} p_{1}^{x_{1}} p_{3}^{x_{3}}
$$

## Proof of the $3 \times 3$ Case

## Factorization:

$$
n=p_{1}^{x_{1}} p_{2}^{x_{2}} p_{3}^{x_{3}} \Longrightarrow n^{\prime}=x_{1} p_{1}^{x_{1}-1} p_{2}^{x_{2}} p_{3}^{x_{3}}+x_{2} p_{2}^{x_{2}-1} p_{1}^{x_{1}} p_{3}^{x_{3}}+x_{3} p_{3}^{x_{3}-1} p_{1}^{x_{1}} p_{2}^{x_{2}}
$$

$$
\left|\begin{array}{ccc}
x_{1} p_{1}^{x_{1}} & x_{3} p_{3}^{x_{3}-1} \\
-p_{1}^{x_{1}} & p_{2}^{x_{2}} & 0 \\
-p_{1}^{x_{1}} & 0 &
\end{array}\right|=x_{1} p_{1}^{x_{1}-1} p_{2}^{x_{2}} p_{3}^{x_{3}}
$$

$$
\begin{aligned}
& +x_{2} p_{2}^{x_{2}-1} p_{1}^{x_{1}} p_{3}^{x_{3}} \\
& +x_{3} p_{3}^{x_{3}-1} p_{1}^{x_{1}} p_{2}^{x_{2}}
\end{aligned}
$$

## Inductive Step

Factorization: $n=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{k}}$
We assume that the result holds for the above factorization, and we proceed by induction on $k$. Consider the case for $k+1$. We want to show that

$$
\left(n \cdot p_{k+1}^{x_{k+1}}\right)^{\prime}=n^{\prime} \cdot p_{k+1}^{x_{k+1}}+n \cdot x_{k+1} p_{k+1}^{x_{k+1}-1}
$$

## Inductive Step

Factorization: $n=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{k}}$
We assume that the result holds for the above factorization, and we proceed by induction on $k$. Consider the case for $k+1$. We want to show that

$$
\left(n \cdot p_{k+1}^{x_{k+1}}\right)^{\prime}=n^{\prime} \cdot p_{k+1}^{x_{k+1}}+n \cdot x_{k+1} p_{k+1}^{x_{k+1}-1}
$$

Consider the matrix representation for an $n^{\prime}$ with $k+1$ prime factors shown below:
$x_{1} \cdot p_{1}^{x_{1}-1}$
$x_{2} \cdot p_{2}^{x_{2}-1}$
$x_{3} \cdot p_{3}^{x_{3}-1}$
$x_{4} \cdot p_{4}^{x_{4}-1} \quad \ldots$
$x_{k} \cdot p_{k}^{x_{k}-1}$
$x_{k+1} \cdot p_{k+1}^{x_{k+1}-1}$
$-p_{1}^{x_{1}}$
$p_{2}^{x_{2}}$
0
0
0
$-p_{1}^{x_{1}}$
0
$p_{3}^{x_{3}}$
0
0
$p_{4}^{x_{4}}$
0
$-p_{1}^{x_{1}}$
0
0
$0 \quad \cdots \quad p_{k}^{x_{k}}$
$-p_{1}^{x_{1}}$
0
0
0

$$
p_{k+1}^{x_{k}+1}
$$

## Inductive Step

Factorization: $n=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{k}}$
We assume that the result holds for the above factorization, and we proceed by induction on $k$. Consider the case for $k+1$. We want to show that

$$
\left(n \cdot p_{k+1}^{x_{k+1}}\right)^{\prime}=n^{\prime} \cdot p_{k+1}^{x_{k+1}}+n \cdot x_{k+1} p_{k+1}^{x_{k+1}-1} .
$$

Consider the matrix representation for an $n$ with $k+1$ prime factors shown below:
$x_{1} \cdot p_{1}^{x_{1}-1}$
$x_{2} \cdot p_{2}^{x_{2}-1}$
$x_{3} \cdot p_{3}^{x_{3}-1}$
$x_{4} \cdot p_{4}^{x_{4}-1}$
$x_{k} \cdot p_{k}^{x_{k}-1}$
$-p_{1}^{x_{1}}$
$p_{2}^{x_{2}}$
0
0
0
$-p_{1}^{x_{1}}$
0
$p_{3}^{x_{3}}$
0
$-p_{1}^{x_{1}}$
0
0
$p_{4}^{x_{4}}$
0
$-p_{1}^{x_{1}}$
0
0
0
$\cdots \quad p_{k}^{x_{k}}$

$$
p_{k+1}^{x_{k}+1}
$$

## Inductive Step

Factorization: $n=p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{k}^{x_{k}}$
We assume that the result holds for the above factorization, and we proceed by induction on $k$. Consider the case for $k+1$. We want to show that

$$
\left(n \cdot p_{k+1}^{x_{k+1}}\right)^{\prime}=n^{\prime} \cdot p_{k+1}^{x_{k+1}}+n \cdot x_{k+1} p_{k+1}^{x_{k+1}-1}
$$

Consider the matrix representation for an $n$ with $k+1$ prime factors shown below:

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $-p_{1}^{x_{1}}$ | $p_{2}^{x_{2}}$ | 0 | 0 | $\cdots$ | 0 |  |
| $-p_{1}^{x_{1}}$ | 0 | $p_{3}^{x_{3}}$ | 0 | $\cdots$ | 0 |  |
| $-p_{1}^{x_{1}}$ | 0 | 0 | $p_{4}^{x_{4}}$ | $\ldots$ | 0 |  |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ | $\ddots$ | $\vdots$ |  |
| $-p_{k+1}^{x_{1}-1}$ | 0 | 0 | 0 | $\cdots$ | $p_{k}^{x_{k}}$ |  |
| $-p_{1}^{x_{1}}$ | 0 | 0 | 0 | $\cdots$ | 0 |  |

## Future Areas of Research

## Future Areas of Research

(1) Investigate properties of our determinant representation for the number derivative on $\mathbb{Z}^{n}$.

## Future Areas of Research

(1) Investigate properties of our determinant representation for the number derivative on $\mathbb{Z}^{n}$.
(2) Investigate orbits of numbers with stable factors under $\mathbb{Z}^{n}$,

$$
\begin{aligned}
& 108=2^{2} \cdot 3^{3}: \quad 108 \rightarrow 108 \cdot 2 \rightarrow 108 \cdot 5 \rightarrow 108 \cdot 11 \rightarrow 108 \cdot 23 \rightarrow \ldots \\
& 432=2^{2} \cdot 2^{2} \cdot 3^{3}: \quad 432 \rightarrow 432 \cdot 3 \rightarrow 432 \cdot 10 \rightarrow 432 \cdot 37 \rightarrow 432 \cdot 112 \rightarrow \ldots
\end{aligned}
$$

## Future Areas of Research

(1) Investigate properties of our determinant representation for the number derivative on $\mathbb{Z}^{n}$.
(2) Investigate orbits of numbers with stable factors under $\mathbb{Z}^{n}$,

$$
\begin{aligned}
& 108=2^{2} \cdot 3^{3}: \quad 108 \rightarrow 108 \cdot 2 \rightarrow 108 \cdot 5 \rightarrow 108 \cdot 11 \rightarrow 108 \cdot 23 \rightarrow \ldots \\
& 432=2^{2} \cdot 2^{2} \cdot 3^{3}: \quad 432 \rightarrow 432 \cdot 3 \rightarrow 432 \cdot 10 \rightarrow 432 \cdot 37 \rightarrow 432 \cdot 112 \rightarrow \ldots
\end{aligned}
$$

(3) Extending the definition of the number derivative to complex domains.

## Future Areas of Research

(1) Investigate properties of our determinant representation for the number derivative on $\mathbb{Z}^{n}$.
(2) Investigate orbits of numbers with stable factors under $\mathbb{Z}^{n}$,

$$
\begin{aligned}
& 108=2^{2} \cdot 3^{3}: \quad 108 \rightarrow 108 \cdot 2 \rightarrow 108 \cdot 5 \rightarrow 108 \cdot 11 \rightarrow 108 \cdot 23 \rightarrow \ldots \\
& 432=2^{2} \cdot 2^{2} \cdot 3^{3}: \quad 432 \rightarrow 432 \cdot 3 \rightarrow 432 \cdot 10 \rightarrow 432 \cdot 37 \rightarrow 432 \cdot 112 \rightarrow \ldots
\end{aligned}
$$

(3) Extending the definition of the number derivative to complex domains.
(4) Solving second order eigenvalue problems for NDEs, i.e. $n^{\prime \prime}=\lambda n$
(1) Investigate properties of our determinant representation for the number derivative on $\mathbb{Z}^{n}$.
(2) Investigate orbits of numbers with stable factors under $\mathbb{Z}^{n}$,

$$
\begin{aligned}
& 108=2^{2} \cdot 3^{3}: \quad 108 \rightarrow 108 \cdot 2 \rightarrow 108 \cdot 5 \rightarrow 108 \cdot 11 \rightarrow 108 \cdot 23 \rightarrow \ldots \\
& 432=2^{2} \cdot 2^{2} \cdot 3^{3}: \quad 432 \rightarrow 432 \cdot 3 \rightarrow 432 \cdot 10 \rightarrow 432 \cdot 37 \rightarrow 432 \cdot 112 \rightarrow \ldots
\end{aligned}
$$

(3) Extending the definition of the number derivative to complex domains.
(4) Solving second order eigenvalue problems for NDEs, i.e. $n^{\prime \prime}=\lambda n$

## Questions?

