## Investigations of the Number Derivative

Adam Simpson

Texas Section of the MAA

April 12, 2012



All positive integers  $n \ge 2$  can be written as  $n = \prod_{i=1}^{k} p_i^{x_i}$  for distinct primes pand positive integers x. This factorization is unique up to order.

All positive integers  $n \ge 2$  can be written as  $n = \prod_{i=1}^{k} p_i^{x_i}$  for distinct primes p and positive integers x. This factorization is unique up to order.

#### Definition (Ufranovski, 2)

Number Derivative:

If 
$$n = \prod_{i=1}^{k} p_i^{x_i}$$
, then  $n' = \sum_{i=1}^{k} n\left(\frac{x_i}{p_i}\right)$ 

All positive integers  $n \ge 2$  can be written as  $n = \prod_{i=1}^{k} p_i^{x_i}$  for distinct primes p and positive integers x. This factorization is unique up to order.

#### Definition (Ufranovski, 2)

Number Derivative:

If 
$$n = \prod_{i=1}^{k} p_i^{x_i}$$
, then  $n' = \sum_{i=1}^{k} n\left(\frac{x_i}{p_i}\right)$ 

All positive integers  $n \ge 2$  can be written as  $n = \prod_{i=1}^{k} p_i^{x_i}$  for distinct primes p and positive integers x. This factorization is unique up to order.

#### Definition (Ufranovski, 2)

Number Derivative:

If 
$$n = \prod_{i=1}^{k} p_i^{x_i}$$
, then  $n' = \sum_{i=1}^{k} n\left(\frac{x_i}{p_i}\right)$ 

**1** 
$$1' = 0$$

All positive integers  $n \ge 2$  can be written as  $n = \prod_{i=1}^{k} p_i^{x_i}$  for distinct primes p and positive integers x. This factorization is unique up to order.

#### Definition (Ufranovski, 2)

Number Derivative:

If 
$$n = \prod_{i=1}^{k} p_i^{x_i}$$
, then  $n' = \sum_{i=1}^{k} n\left(\frac{x_i}{p_i}\right)$ 

1' = 0  

$$p' = 1, \forall p \in primes$$

All positive integers  $n \ge 2$  can be written as  $n = \prod_{i=1}^{k} p_i^{x_i}$  for distinct primes p and positive integers x. This factorization is unique up to order.

#### Definition (Ufranovski, 2)

Number Derivative:

If 
$$n = \prod_{i=1}^{k} p_i^{x_i}$$
, then  $n' = \sum_{i=1}^{k} n\left(\frac{x_i}{p_i}\right)$ 

• 
$$1' = 0$$
  
•  $p' = 1$ ,  $\forall p \in primes$   
•  $(ab)' = a'b + ab'$ ,  $\forall a, b \in \mathbb{Z}^+$  (Product Rule)

## Example $6' = (2 \cdot 3)'$

## Example

 $6' = (2 \cdot 3)' = 2' \cdot 3 + 2 \cdot 3'$ 

$$6' = (2 \cdot 3)' = 2' \cdot 3 + 2 \cdot 3' = (1) \cdot (3) + (2) \cdot (1)$$

$$6' = (2 \cdot 3)' = 2' \cdot 3 + 2 \cdot 3' = (1) \cdot (3) + (2) \cdot (1) = 3 + 2 = 5$$

## Example

$$6' = (2 \cdot 3)' = 2' \cdot 3 + 2 \cdot 3' = (1) \cdot (3) + (2) \cdot (1) = 3 + 2 = 5$$

## \_\_\_\_\_\_Example

$$45' = (3^2 \cdot 5)'$$

## Example

$$6' = (2 \cdot 3)' = 2' \cdot 3 + 2 \cdot 3' = (1) \cdot (3) + (2) \cdot (1) = 3 + 2 = 5$$

$$45' = (3^2 \cdot 5)' = 3^2 \cdot 5\left(\frac{2}{3} + \frac{1}{5}\right)$$

## Example

$$6' = (2 \cdot 3)' = 2' \cdot 3 + 2 \cdot 3' = (1) \cdot (3) + (2) \cdot (1) = 3 + 2 = 5$$

$$45' = (3^2 \cdot 5)' = 3^2 \cdot 5\left(\frac{2}{3} + \frac{1}{5}\right) = 2 \cdot 3 \cdot 5 + 3^2$$

### Example

$$6' = (2 \cdot 3)' = 2' \cdot 3 + 2 \cdot 3' = (1) \cdot (3) + (2) \cdot (1) = 3 + 2 = 5$$

$$45' = (3^2 \cdot 5)' = 3^2 \cdot 5\left(\frac{2}{3} + \frac{1}{5}\right) = 2 \cdot 3 \cdot 5 + 3^2 = 30 + 9 = 39$$

#### Example

$$6' = (2 \cdot 3)' = 2' \cdot 3 + 2 \cdot 3' = (1) \cdot (3) + (2) \cdot (1) = 3 + 2 = 5$$

#### Example

$$45' = (3^2 \cdot 5)' = 3^2 \cdot 5\left(\frac{2}{3} + \frac{1}{5}\right) = 2 \cdot 3 \cdot 5 + 3^2 = 30 + 9 = 39$$

#### Extension From $\mathbb{Z}^+ \to \mathbb{Z}$

If we define (-1)' = 0, then our definition of the number derivative can be extended to the domain of integers.

#### Example

$$6' = (2 \cdot 3)' = 2' \cdot 3 + 2 \cdot 3' = (1) \cdot (3) + (2) \cdot (1) = 3 + 2 = 5$$

#### Example

$$45' = (3^2 \cdot 5)' = 3^2 \cdot 5\left(\frac{2}{3} + \frac{1}{5}\right) = 2 \cdot 3 \cdot 5 + 3^2 = 30 + 9 = 39$$

#### Extension From $\mathbb{Z}^+ \to \mathbb{Z}$

If we define (-1)' = 0, then our definition of the number derivative can be extended to the domain of integers.

$$(-6)' = (-1 \cdot 6)'$$

#### Example

$$6' = (2 \cdot 3)' = 2' \cdot 3 + 2 \cdot 3' = (1) \cdot (3) + (2) \cdot (1) = 3 + 2 = 5$$

#### Example

$$45' = (3^2 \cdot 5)' = 3^2 \cdot 5\left(\frac{2}{3} + \frac{1}{5}\right) = 2 \cdot 3 \cdot 5 + 3^2 = 30 + 9 = 39$$

#### Extension From $\mathbb{Z}^+ \to \mathbb{Z}$

If we define (-1)' = 0, then our definition of the number derivative can be extended to the domain of integers.

$$(-6)' = (-1 \cdot 6)' = (-1)' \cdot 6 + 6' \cdot (-1)$$

#### Example

$$6' = (2 \cdot 3)' = 2' \cdot 3 + 2 \cdot 3' = (1) \cdot (3) + (2) \cdot (1) = 3 + 2 = 5$$

#### Example

$$45' = (3^2 \cdot 5)' = 3^2 \cdot 5\left(\frac{2}{3} + \frac{1}{5}\right) = 2 \cdot 3 \cdot 5 + 3^2 = 30 + 9 = 39$$

#### Extension From $\mathbb{Z}^+ \to \mathbb{Z}$

If we define (-1)' = 0, then our definition of the number derivative can be extended to the domain of integers.

$$(-6)' = (-1 \cdot 6)' = (-1)' \cdot 6 + 6' \cdot (-1) = -(6')$$

#### Example

$$6' = (2 \cdot 3)' = 2' \cdot 3 + 2 \cdot 3' = (1) \cdot (3) + (2) \cdot (1) = 3 + 2 = 5$$

#### Example

$$45' = (3^2 \cdot 5)' = 3^2 \cdot 5\left(\frac{2}{3} + \frac{1}{5}\right) = 2 \cdot 3 \cdot 5 + 3^2 = 30 + 9 = 39$$

#### Extension From $\mathbb{Z}^+ \to \mathbb{Z}$

If we define (-1)' = 0, then our definition of the number derivative can be extended to the domain of integers.

$$(-6)' = (-1 \cdot 6)' = (-1)' \cdot 6 + 6' \cdot (-1) = -(6') = -5$$

#### Extension From $\mathbb{Z} \to \mathbb{Q}$

Recall the definition:

If 
$$n = \prod_{i=1}^k p_i^{x_i}$$
, then  $n' = \sum_{i=1}^k n\left(rac{x_i}{p_i}
ight)$ 

Let us allow our  $x_i$  to assume negative integer values.

#### Extension From $\mathbb{Z} \to \mathbb{Q}$

Recall the definition:

If 
$$n = \prod_{i=1}^k p_i^{x_i}$$
, then  $n' = \sum_{i=1}^k n\left(rac{x_i}{p_i}
ight)$ 

Let us allow our  $x_i$  to assume negative integer values.

$$\left(\frac{10}{9}\right)' = \left(2 \cdot 5 \cdot 3^{-2}\right)'$$
$$= \left(2 \cdot 5 \cdot 3^{-2}\right) \cdot \left(\frac{1}{2} + \frac{1}{5} + \frac{-2}{3}\right)$$
$$= \frac{5}{9} + \frac{2}{9} - \frac{20}{27}$$
$$= \frac{1}{27}$$

We can again redefine our definition to now allow our  $x_i$  to assume fractional values.  $2^{(1/2)} = \sqrt{2}$  is such an irrational number.

We can again redefine our definition to now allow our  $x_i$  to assume fractional values.  $2^{(1/2)} = \sqrt{2}$  is such an irrational number.

# Example $\left(2^{(3/4)}\right)'$

We can again redefine our definition to now allow our  $x_i$  to assume fractional values.  $2^{(1/2)}=\sqrt{2}$  is such an irrational number.

$$\left(2^{(3/4)}\right)' = 2^{(3/4)} \cdot \left(\frac{3/4}{2}\right)$$

We can again redefine our definition to now allow our  $x_i$  to assume fractional values.  $2^{(1/2)} = \sqrt{2}$  is such an irrational number.

$$\left(2^{(3/4)}\right)' = 2^{(3/4)} \cdot \left(\frac{3/4}{2}\right) = 2^{(3/4)} \cdot \frac{3}{8}$$

We can again redefine our definition to now allow our  $x_i$  to assume fractional values.  $2^{(1/2)} = \sqrt{2}$  is such an irrational number.

$$(2^{(3/4)})' = 2^{(3/4)} \cdot (\frac{3/4}{2}) = 2^{(3/4)} \cdot \frac{3}{8} = 2^{(3/4)} \cdot 2^{-3} \cdot 3$$

We can again redefine our definition to now allow our  $x_i$  to assume fractional values.  $2^{(1/2)} = \sqrt{2}$  is such an irrational number.

$$\left(2^{(3/4)}\right)' = 2^{(3/4)} \cdot \left(\frac{3/4}{2}\right) = 2^{(3/4)} \cdot \frac{3}{8} = 2^{(3/4)} \cdot 2^{-3} \cdot 3 = 2^{(-9/4)} \cdot 3$$

Number Differential Equations (NDEs):

Number Differential Equations (NDEs):

**1** 
$$n' = 1, \quad n = p$$

These solutions come directly from the properties we defined. But they also happen to be uniquely prime.

Number Differential Equations (NDEs):

**(**) 
$$n' = 1, \quad n = p$$

These solutions come directly from the properties we defined. But they also happen to be uniquely prime.

**2** 
$$n' = n$$
,  $n = p^p$   
Notice that  $(p^p)' = p^p \cdot \left(\frac{p}{p}\right) = p^p$ .

Adam Simpson Investigations of the Number Derivative

Number Differential Equations (NDEs):

**()** 
$$n' = 1, \quad n = p$$

(

These solutions come directly from the properties we defined. But they also happen to be uniquely prime.

Notice that 
$$(p^p)' = p^p \cdot \left(\frac{p}{p}\right) = p^p$$
.

 $\ \, {\bf 0} \ \, n'=2b, \quad \ \, {\rm (Goldbach \ Conjecture)}$ 

The Goldbach Conjecture states that every even number greater than 3 is the sum of two primes. So for two primes p and q, if there are solutions of type n = pq for every b > 1, then the Goldbach Conjecture holds. (Ufranovski, 6)

Number Differential Equations (NDEs):

**1** 
$$n' = 1, \quad n = p$$

These solutions come directly from the properties we defined. But they also happen to be uniquely prime.

2 
$$n' = n$$
,  $n = p^p$   
Notice that  $(p^p)' = p^p \cdot \left(\frac{p}{p}\right) = p^p$ .

• 
$$n' = 2b$$
, (Goldbach Conjecture)

The Goldbach Conjecture states that every even number greater than 3 is the sum of two primes. So for two primes p and q, if there are solutions of type n = pq for every b > 1, then the Goldbach Conjecture holds. (Ufranovski, 6)

## • n'' = 1, (Twin Primes Conjecture)

The Twin Primes Conjecture states that there are infinitely many prime pairs of the type p, p + 2. So if n = 2p, n' = p + 2, and thus if there are infinitely many solutions to (2p)'' = 1, then the Twin Primes Conjecture holds. (Ufranovski, 10)

Consider an arbitrary factorization of a positive integer  $n. \ \mbox{Then}$ 

$$n = \prod_{i=1}^{k} p_i^{x_i}$$

Consider an arbitrary factorization of a positive integer n. Then

$$n = \prod_{i=1}^{k} p_i^{x_i}$$

This is analogous to the  $k \times k$  determinant of the diagonal matrix of the form:

| $p_{1}^{x_{1}}$ | 0           | 0               | 0               | • • • | 0           |
|-----------------|-------------|-----------------|-----------------|-------|-------------|
| 0               | $p_2^{x_2}$ | 0               | 0               |       | 0           |
| 0               | 0           | $p_{3}^{x_{3}}$ | 0               |       | 0           |
| 0               | 0           | 0               | $p_{4}^{x_{4}}$ |       | 0           |
| ÷               | ÷           | ÷               | ÷               | ·     | ÷           |
| 0               | 0           | 0               | 0               |       | $p_k^{x_k}$ |

Consider an arbitrary factorization of a positive integer n. Then

$$n = \prod_{i=1}^{k} p_i^{x_i}$$

This is analogous to the  $k \times k$  determinant of the diagonal matrix of the form:

| $p_1^{x_1}$ | 0           | 0               | 0               | ••• | 0               |
|-------------|-------------|-----------------|-----------------|-----|-----------------|
| 0           | $p_2^{x_2}$ | 0               | 0               |     | 0               |
| 0           | 0           | $p_{3}^{x_{3}}$ | 0               |     | 0               |
| 0           | 0           | 0               | $p_{4}^{x_{4}}$ |     | 0               |
| ÷           | ÷           | ÷               | ÷               | ·   | ÷               |
| 0           | 0           | 0               | 0               |     | $p_{k}^{x_{k}}$ |

Since this matrix is diagonal the determinant of this matrix takes the same form as our factorization above.

If we extend this analogy to the number derivative,

$$n' = \sum_{i=1}^{k} n\left(\frac{x_i}{p_i}\right)$$

If we extend this analogy to the number derivative,

$$n' = \sum_{i=1}^{k} n\left(\frac{x_i}{p_i}\right)$$

we can show that the number derivative can be recast as the determinant of the arrowhead matrix below:

If we extend this analogy to the number derivative,

$$n' = \sum_{i=1}^{k} n\left(\frac{x_i}{p_i}\right)$$

we can show that the number derivative can be recast as the determinant of the arrowhead matrix below:

| $x_1 \cdot p_1^{x_1 - 1}$ | $x_2 \cdot p_2^{x_2 - 1}$ | $x_3 \cdot p_3^{x_3 - 1}$ | $x_4 \cdot p_4^{x_4 - 1}$ |   | $x_k \cdot p_k^{x_k - 1}$ |
|---------------------------|---------------------------|---------------------------|---------------------------|---|---------------------------|
| $-p_{1}^{x_{1}}$          | $p_2^{x_2}$               | 0                         | 0                         |   | 0                         |
| $-p_{1}^{x_{1}}$          | 0                         | $p_3^{x_3}$               | 0                         |   | 0                         |
| $-p_{1}^{x_{1}}$          | 0                         | 0                         | $p_{4}^{x_{4}}$           |   | 0                         |
| ÷                         | :                         | :                         | :                         | · | ÷                         |
| $-p_{1}^{x_{1}}$          | 0                         | 0                         | 0                         |   | $p_k^{x_k}$               |

## Proof of the $2\times 2~\mathrm{Case}$

Consider a number n having only two prime factors, i.e.  $n = p_1^{x_1} p_2^{x_2}$ . We must show that our determinant gives us the same result when applying the product rule to this factorization, namely,

$$n' = x_1 p_1^{x_1 - 1} p_2 + x_2 p_2^{x_1 - 1} p_1.$$

## Proof of the $2\times 2~\mathrm{Case}$

Consider a number n having only two prime factors, i.e.  $n = p_1^{x_1} p_2^{x_2}$ . We must show that our determinant gives us the same result when applying the product rule to this factorization, namely,

$$n' = x_1 p_1^{x_1 - 1} p_2 + x_2 p_2^{x_1 - 1} p_1.$$

$$\begin{vmatrix} x_1 p_1^{x_1-1} & x_2 p_2^{x_2-1} \\ -p_1^{x_1} & p_2^{x_2} \end{vmatrix}$$

## Proof of the $2\times 2$ Case

Consider a number n having only two prime factors, i.e.  $n = p_1^{x_1} p_2^{x_2}$ . We must show that our determinant gives us the same result when applying the product rule to this factorization, namely,

$$n' = x_1 p_1^{x_1 - 1} p_2 + x_2 p_2^{x_1 - 1} p_1.$$

$$\begin{vmatrix} x_1 p_1^{x_1-1} & x_2 p_2^{x_2-1} \\ -p_1^{x_1} & p_2^{x_2} \end{vmatrix} = x_1 p_1^{x_1-1} p_2 + x_2 p_2^{x_1-1} p_1$$

## Proof of the $3\times 3$ Case

Factorization:

 $n = p_1^{x_1} p_2^{x_2} p_3^{x_3} \implies n' = x_1 p_1^{x_1 - 1} p_2^{x_2} p_3^{x_3} + x_2 p_2^{x_2 - 1} p_1^{x_1} p_3^{x_3} + x_3 p_3^{x_3 - 1} p_1^{x_1} p_2^{x_2}$ 

$$\begin{vmatrix} x_1 p_1^{x_1-1} & x_2 p_2^{x_2-1} & x_3 p_3^{x_3-1} \\ -p_1^{x_1} & p_2^{x_2} & 0 \\ -p_1^{x_1} & 0 & p_3^{x_3} \end{vmatrix} =$$

## Proof of the $3\times 3~\mathrm{Case}$

Factorization:

 $n = p_1^{x_1} p_2^{x_2} p_3^{x_3} \implies n' = x_1 p_1^{x_1 - 1} p_2^{x_2} p_3^{x_3} + x_2 p_2^{x_2 - 1} p_1^{x_1} p_3^{x_3} + x_3 p_3^{x_3 - 1} p_1^{x_1} p_2^{x_2}$ 

$$\begin{vmatrix} x_1 p_1^{x_1-1} & x_2 p_2^{x_2-1} & x_3 p_3^{x_3-1} \\ -p_1^{x_1} & p_2^{x_2} & 0 \\ -p_1^{x_1} & 0 & p_3^{x_3} \end{vmatrix} = x_1 p_1^{x_1-1} p_2^{x_2} p_3^{x_3}$$

## Proof of the $3\times 3$ Case

Factorization:

 $n = p_1^{x_1} p_2^{x_2} p_3^{x_3} \implies n' = x_1 p_1^{x_1 - 1} p_2^{x_2} p_3^{x_3} + x_2 p_2^{x_2 - 1} p_1^{x_1} p_3^{x_3} + x_3 p_3^{x_3 - 1} p_1^{x_1} p_2^{x_2}$ 

$$\begin{vmatrix} x_1 p_1^{x_1-1} & x_2 p_2^{x_2-1} & x_3 p_3^{x_3-1} \\ -p_1^{x_1} & p_2^{x_2} & 0 \\ -p_1^{x_1} & 0 & p_3^{x_3} \end{vmatrix} = x_1 p_1^{x_1-1} p_2^{x_2} p_3^{x_3}$$

 $+x_2p_2^{x_2-1}p_1^{x_1}p_3^{x_3}$ 

## Proof of the $3\times 3$ Case

Factorization:

 $n = p_1^{x_1} p_2^{x_2} p_3^{x_3} \implies n' = x_1 p_1^{x_1 - 1} p_2^{x_2} p_3^{x_3} + x_2 p_2^{x_2 - 1} p_1^{x_1} p_3^{x_3} + x_3 p_3^{x_3 - 1} p_1^{x_1} p_2^{x_2}$ 

$$\begin{vmatrix} x_1 p_1^{x_1-1} & x_2 p_2^{x_2-1} & x_3 p_3^{x_3-1} \\ -p_1^{x_1} & p_2^{x_2} & 0 \\ -p_1^{x_1} & 0 & p_3^{x_3} \end{vmatrix} = x_1 p_1^{x_1-1} p_2^{x_2} p_3^{x_3}$$

$$+ x_2 p_2^{x_2-1} p_1^{x_1} p_3^{x_3}$$

$$+x_3p_3^{x_3-1}p_1^{x_1}p_2^{x_2}$$

Factorization:  $n = p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$ 

We assume that the result holds for the above factorization, and we proceed by induction on k. Consider the case for k + 1. We want to show that

$$\left(n \cdot p_{k+1}^{x_{k+1}}\right)' = n' \cdot p_{k+1}^{x_{k+1}} + n \cdot x_{k+1} p_{k+1}^{x_{k+1}-1}.$$

Factorization:  $n = p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$ 

We assume that the result holds for the above factorization, and we proceed by induction on k. Consider the case for k + 1. We want to show that

$$\left(n \cdot p_{k+1}^{x_{k+1}}\right)' = n' \cdot p_{k+1}^{x_{k+1}} + n \cdot x_{k+1} p_{k+1}^{x_{k+1}-1}.$$

Consider the matrix representation for an n' with k+1 prime factors shown below:

Factorization:  $n = p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$ 

We assume that the result holds for the above factorization, and we proceed by induction on k. Consider the case for k + 1. We want to show that

$$\left(n \cdot p_{k+1}^{x_{k+1}}\right)' = n' \cdot p_{k+1}^{x_{k+1}} + n \cdot x_{k+1} p_{k+1}^{x_{k+1}-1}$$

Consider the matrix representation for an n with k + 1 prime factors shown below:



Factorization:  $n = p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$ 

We assume that the result holds for the above factorization, and we proceed by induction on k. Consider the case for k + 1. We want to show that

$$\left(n \cdot p_{k+1}^{x_{k+1}}\right)' = n' \cdot p_{k+1}^{x_{k+1}} + n \cdot x_{k+1} p_{k+1}^{x_{k+1}-1}$$

Consider the matrix representation for an n with k + 1 prime factors shown below:



(1) Investigate properties of our determinant representation for the number derivative on  $\mathbb{Z}^n$ .

- (1) Investigate properties of our determinant representation for the number derivative on  $\mathbb{Z}^n$ .
- (2) Investigate orbits of numbers with stable factors under  $\mathbb{Z}^n$ ,

 $108 = 2^2 \cdot 3^3 : \quad 108 \to 108 \cdot 2 \to 108 \cdot 5 \to 108 \cdot 11 \to 108 \cdot 23 \to \dots$  $432 = 2^2 \cdot 2^2 \cdot 3^3 : \quad 432 \to 432 \cdot 3 \to 432 \cdot 10 \to 432 \cdot 37 \to 432 \cdot 112 \to \dots$ 

- (1) Investigate properties of our determinant representation for the number derivative on  $\mathbb{Z}^n$ .
- (2) Investigate orbits of numbers with stable factors under  $\mathbb{Z}^n$ ,

 $108 = 2^2 \cdot 3^3 : \quad 108 \to 108 \cdot 2 \to 108 \cdot 5 \to 108 \cdot 11 \to 108 \cdot 23 \to \dots$  $432 = 2^2 \cdot 2^2 \cdot 3^3 : \quad 432 \to 432 \cdot 3 \to 432 \cdot 10 \to 432 \cdot 37 \to 432 \cdot 112 \to \dots$ 

(3) Extending the definition of the number derivative to complex domains.

- (1) Investigate properties of our determinant representation for the number derivative on  $\mathbb{Z}^n$ .
- (2) Investigate orbits of numbers with stable factors under  $\mathbb{Z}^n$ ,

 $108 = 2^2 \cdot 3^3 : \quad 108 \to 108 \cdot 2 \to 108 \cdot 5 \to 108 \cdot 11 \to 108 \cdot 23 \to \dots$  $432 = 2^2 \cdot 2^2 \cdot 3^3 : \quad 432 \to 432 \cdot 3 \to 432 \cdot 10 \to 432 \cdot 37 \to 432 \cdot 112 \to \dots$ 

- (3) Extending the definition of the number derivative to complex domains.
- (4) Solving second order eigenvalue problems for NDEs, i.e.  $n'' = \lambda n$

- (1) Investigate properties of our determinant representation for the number derivative on  $\mathbb{Z}^n$ .
- (2) Investigate orbits of numbers with stable factors under  $\mathbb{Z}^n$ ,

 $108 = 2^2 \cdot 3^3 : \quad 108 \to 108 \cdot 2 \to 108 \cdot 5 \to 108 \cdot 11 \to 108 \cdot 23 \to \dots$  $432 = 2^2 \cdot 2^2 \cdot 3^3 : \quad 432 \to 432 \cdot 3 \to 432 \cdot 10 \to 432 \cdot 37 \to 432 \cdot 112 \to \dots$ 

- (3) Extending the definition of the number derivative to complex domains.
- (4) Solving second order eigenvalue problems for NDEs, i.e.  $n'' = \lambda n$

## Questions?