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Abstract

Using appropriately defined functionals, a cone expansion and com-
pression fixed point theorem is applied to obtain a positive solution
and bounds on the solution of a left focal second order boundary value
problem. We compare our results to those known for a similar right
focal boundary value problem.
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Many of the problems in nonlinear analysis arise from the inspection of
equations or problems that somehow model real phenomena. Many problems
including but not limited to, fluid dynamics, gas diffusion through a porous
media, thermal self ignition of a chemically active mixture of gases, catalytic
theory, and diffusion of heat are positive-dependent; that is, only positive
solutions are of any significance.

In this paper we consider the existence of positive solutions for a second
order differential equation with left focal boundary conditions. Our main
result yields the existence of a positive solution as well as bounds for the
solution. Our techniques make use of the fixed point theorem of cone expan-
sion and compression of functional type found in [3]. We apply the theorem
to a completely continuous operator whose fixed points are solutions for our
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problem. The bounds for our solutions are a direct result of the extension of
this theorem. (see [4])

Obtaining fixed points for the operators considered in this paper is a
topic that has been extensively researched. In [14], Krasnosel’skii considered
a similar integral operator A which was bounded above and below by order
preserving operators A1 and A2. If A1 and A2 could be shown to have
alternating regions of slow and then rapid growth it was possible to recover
disjoint order intervals left invariant by the operator A. Via the Schauder
fixed point theorem, Krasnosel’skii showed that the operator A has a fixed
point in each of the intervals which A left invariant. This result led numerous
mathematicians to investigate under what conditions operators of this type
would have not only one fixed point, but multiple fixed points. We refer the
reader to [2], [9], [10], and [17] for representatives of papers in this area.

In the literature it is not uncommon to refer to the Krasnosel’skii fixed
point theorem as the fixed point theorem of cone expansion and compression
of norm type. Recently several authors [3], [4], [5] have generalized this
theorem by replacing the norm conditions with suitably defined functionals.
According to [3], these functionals allow a greater flexibility in applying the
Krasnosel’skii result especially in applications to boundary value problems.
It is these applications in which we are interested.

1 Preliminaries

We begin with some preliminary definitions and background results on cones
and completely continuous operators. We also state the fixed point theorem
of cone expansion and compression of functional type.

Definition 1.1 Let E be a real Banach space. A nonempty, closed, convex
set P ⊂ E is called a cone if it satisfies the following:

(i) If x ∈ P , then λx ∈ P for all λ ≥ 0.

(ii) If x ∈ P,−x ∈ P then x = 0.

Definition 1.2 A cone P of a real Banach space E is said to be normal if
there exists δ ≥ 0 such that ‖x + y‖ ≥ δ for all x, y ∈ P with ‖x‖ = ‖y‖ = 1.
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It is well known that for P ⊂ E a normal cone in a real Banach space E,
P is normal if and only if the norm of the Banach space E is semimonotone.
That is, there exists a constant N ≥ 0 such that 0 ≤ x ≤ y implies that

‖x‖ ≤ N‖y‖.
A proof of this result can be found in [7].

Definition 1.3 Let E be a real Banach space. An operator A : E → E is
said to be completely continuous if it is continuous and maps bounded sets
into precompact sets. Additionally, the operator A is called increasing on a
domain D if for P ⊂ E, x1, x2 ∈ D ⊂ P , then A : D → E has the property
that for x1 ≤ x2, Ax1 ≤ Ax2.

Definition 1.4 A non-negative continuous functional α defined on a cone
P in a Banach space E is a map

α : P → [0,∞)

that is continuous. Additionally, the functional is said to be concave if it
satisfies

α(λx + (1− λ)y) ≥ λα(x) + (1− λ)α(y), 0 ≤ λ ≤ 1.

The existence of completely continuous increasing operators which are
invariant under the action of non-negative continuous functionals in regions
of a cone are the basis for our results.

2 Fixed Point Theorem of Cone Expansion

and Compression of Functional Type

In this section we will state the fixed point theorem of cone expansion and
compression of functional type due Anderson, Avery, and Krueger in [3]
and [4]. A majority of the applications presented in this paper are conse-
quences of this theorem. A proof of this result can be found in [3] and [4]. In
the theorem that follows as an analog to order intervals, the authors consider
sets of the form

P (γ, α, r, R) = {x ∈ P : r < α(x) and γ(x) < R}
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where α and γ are non-negative continuous functionals (often the maximum
and minimum of a function over a specific interval) and r, R ∈ R+.

Theorem 2.1 Let P be a normal cone in a real Banach space E, and let α
and γ be nonnegative continuous functionals on P . Assume P (γ, α, r, R) as
above is a nonempty bounded subset of P ,

A : P (γ, α, r, R) → P

is a completely continuous operator and

P (α, r) ⊆ P (γ, R).

If one of the two conditions,

(H1) α(Ax) ≤ r for all x ∈ ∂P (α, r), γ(Ax) ≥ R for all x ∈ ∂P (γ, R),

inf
x∈∂P (γ,R)

‖Ax‖ > 0,

and for all y ∈ ∂P (α, r), z ∈ ∂P (γ, R), λ ≥ 1, and µ ∈ (0, 1], the
functionals satisfy the properties

α(λy) ≥ λα(y), γ(µz) ≤ µγ(z), and α(0) = 0,

(H2) α(Ax) ≥ r for all x ∈ ∂P (α, r), γ(Ax) ≤ R for all x ∈ ∂P (γ, R),

inf
x∈∂P (α,r)

‖Ax‖ > 0,

and for all y ∈ ∂P (α, r), z ∈ ∂P (γ, R), λ ∈ (0, 1] and µ ≥ 1, the
functionals satisfy the properties

α(λy) ≤ λα(y), γ(µz) ≥ µγ(z), and γ(0) = 0,

is satisfied, then A has at least one positive fixed point x∗ such that

r ≤ α(x∗) and γ(x∗) ≤ R.

Moreover, suppose there exist xl, xu ∈ P such that P (γ, α, r, R) ⊆ [xl, xu].
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(E1) If there exists an increasing, completely continuous operator U : [xl, xu] →
P such that Ax ≤ Ux for all x ∈ [xl, xu] and U2xu ≤ Uxu, then

x∗ ≤ x∗u ≤ Unxu,

where n ∈ N and x∗u = lim
n→∞

Unxu.

(E2) If there exists an increasing, completely continuous operator L : [xl, xu] →
P such that Lx ≤ Ax for all x ∈ [xl, xu] and Lxl ≤ L2xl, then

Lnxl ≤ x∗l ≤ x∗,

where n ∈ N and x∗l = lim
n→∞

Lnxl.

3 Second Order Existence Results

Consider the second order boundary value problem,

y′′(t) + f(y(t)) = 0, t ∈ [0, 1], (1)

y(1) = y′(0) = 0, (2)

where f : R → [0,∞) is continuous. By a positive solution of (1), (2) we
mean, y ∈ C2[0, 1], y satisfies (1) on [0, 1] and the boundary conditions (2),
y is non-negative on [0, 1] and positive on some subinterval of [0, 1]. The
solutions of (1), (2) are the fixed points of the operator A given by

Ay(t) :=

∫ 1

0

G(t, s)f(y(s))ds, t ∈ [0, 1],

where, G(t, s) is the Green’s function for −y′′ = 0 satisfying the boundary
conditions (2). In particular, the Green’s function is given by

G(t, s) =

{
1− s, t ≤ s,

1− t, s ≤ t.

Let E = C[0, 1] with supremum norm and define the cone P ⊂ E by

P := {y ∈ E : y is concave, nonnegative, and non-increasing} .



6 Ehrke

As motivation for the defining of our functionals α, γ we remark that for
y ∈ P ,

y(t) ≥ (1− t)‖y‖, 0 ≤ t ≤ 1.

Let η ∈ (0, 1) and define α, γ : P → R by

α(y) := min
t∈[0,1−η]

y(t) = y(1− η)

and
γ(y) := max

t∈[0,1]
y(t) = ‖y‖ = y(0).

We now provide the main result of the paper.

Theorem 3.1 Suppose there exist positive real numbers r, R with r ≤ ηR,
and a continuous f : R → [0,∞), such that the following conditions are met:

(i) f(w) ≤ 2R for w ∈ [0, R],

(ii) f(w) ≥ r
η(1−η)

for w ∈ [r, R].

Then the left focal boundary value problem (1), (2) has at least one positive
solution y∗ such that

r

η(1− η)

(
1− (η2 + t2)

2

)
≤ y∗(t) ≤ R(1− t2), t ∈ [0, 1− η]

and

r(1− t)

η
≤ y∗(t) ≤ R(1− t2), t ∈ [1− η, 1].

Proof: Let y ∈ P . We claim that A : P → P . Let w(t) = Ay(t). Then
w(1) = w′(0) = 0 and w′′(t) = −f(y(t)) ≤ 0. Hence w′(t) is decreasing and
since w′(t) ≤ 0 for all t ∈ [0, 1], we have w(t) decreasing and w(t) ≥ 0 by the
boundary conditions. Hence w(t) ∈ P . Also, the cone P is normal since the
norm of the Banach space E is semi-monotone. We verify a series of claims
for the result.
Claim 1: P (α, r) ⊂ P (γ, R).
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Recall, that for all y ∈ P , y(t) ≥ (1− t)‖y‖. Let y ∈ P (α, r). We have,

r ≥ α(y) = y(1− η) ≥ (1− (1− η))‖y‖
= η‖y‖
= ηy(0)

= ηγ(y).

Thus R ≥ r
η
≥ γ(y). So y ∈ P (γ, R). We simply note at this point that

clearly

α(λy) = λ(α(y)), γ(µz) = µγ(z), γ(0) = 0

for all y ∈ P (α, r), z ∈ ∂P (γ, R), λ ∈ (0, 1] and µ ≥ 1. We now propose
another claim.

Claim 2: For y ∈ ∂P (α, r) (i.e. α(y) = y(1− η) = r) we have α(Ay) ≥ r.

Let y ∈ ∂P (α, r). Then

α(Ay) = Ay(1− η) =

∫ 1

0

G(1− η, s)f(y(s))ds

≥
∫ 1−η

0

G(1− η, s)f(y(s))ds

≥ r

η(1− η)

∫ 1−η

0

G(1− η, s)ds

=
r

η(1− η)
η(1− η)

= r.

The above arguments also yield

inf
y∈∂P (α,r)

‖Ay‖ ≥ r ≥ 0.

Claim 3: For y ∈ ∂P (γ, R) (i.e. γ(y) = y(0) = R) we have γ(Ay) ≤ R.
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Let y ∈ ∂P (γ, R). Then

γ(Ay) = Ay(0) =

∫ 1

0

G(0, s)f(y(s))ds

≤ 2R

∫ 1

0

G(0, s)ds

= 2R
1

2
= R.

By Theorem 2.1 we are guaranteed the existence of a positive solution
y∗(t) to (1), (2). Now define the increasing completely continuous operators
L : P → P , U : P → P by

Ly(t) :=

∫ 1−η

0

G(t, s)
r

η(1− η)
ds

and

Uy(t) :=

∫ 1

0

G(t, s)2Rds

Then for all y ∈ P (γ, α, r, R)

Ly ≤ Ay ≤ Uy.

Moreover, if we define yu, yl ∈ P by

yu(s) := R

and

yl(s) :=

{
r, s ≤ 1− η,
r(1−s)

η
, 1− η ≤ s,

then as a consequence of the concavity of P , we have P (γ, α, r, R) ⊂ [yl, yu].
Clearly, by the the above claims we have Uyu ≤ yu and since Lyl(0) ≥ r and
Lyl(1− η) ≥ r then Lyl ≥ yl. This gives

Lyl(t) =
r

η(1− η)

∫ 1−η

0

G(t, s)ds ≤ y∗(t) ≤ 2R

∫ 1

0

G(t, s)ds = Uyu(t)
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as desired. Note that to obtain the bounds used in Theorem 3.1 we use the
properties of the Green’s function below.∫ 1

0

G(t, s)ds =
1− t2

2

and ∫ 1−η

0

G(t, s)ds =

{
1−(η2+t2)

2
, t ∈ [0, 1− η],

(1− t)(1− η), t ∈ [1− η, 1].

Remark: We want to take this opportunity to comment on the purpose
and role of the condition that r ≤ ηR, and for what values of η does this
relationship make sense given that

r

η(1− η)
≤ f(w) ≤ 2R.

We note that

1

η(1− η)
≥ 4

and so we have

4r ≤ r

η(1− η)
≤ 2R.

Given the above we have r ≤ R
2

and so for values of η ∈ [1
2
, 1) our theorem

makes sense and gives nice bounds for the non-linearity f over the intervals
[0, R] and [r, R]. We note that for η = 1

2
, the lower and upper bounds on f

are the same. We have assumed this throughout the paper.

A similar result for the right focal second order boundary value problem,

y′′(t) + f(y(t)) = 0, t ∈ [0, 1], (3)

y(0) = y′(1) = 0, (4)

where f : R → [0,∞) is continuous, is considered in [4] and lends itself
nicely to the approach used in this paper. We state the results of [4] in
similar fashion to Theorem 3.1.



10 Ehrke

Theorem 3.2 Suppose there exist positive real numbers r, R with r ≤ ηR,
and f : R → [0,∞), such that the following conditions are met:

(i) f(w) ≤ 2R for w ∈ [0, R],

(ii) f(w) ≥ r
η(1−η)

for w ∈ [r, R].

Then the right focal boundary value problem (3), (4) has at least one positive
solution y∗ such that

rt

η
≤ y∗(t) ≤ Rt(2− t), t ∈ [0, η]

and

r

η(1− η)

(
t− (η2 + t2)

2

)
≤ y∗(t) ≤ Rt(2− t), t ∈ [η, 1].

Remark: We observe that for both the left focal problem (1), (2) and the
right focal problem (3), (4) the bounds on the non-linearity f(w) are identical.
This is not without coincidence as the upper bound is fixed and the lower
bound is symmetric about 1 − η. A suitable cone, K, for the right focal
boundary value problem (3), (4) is as you would expect,

K := {y ∈ E : y is concave, nonnegative, and non-decreasing} .

The concavity of the cones P and K for both problems is the motivation for
our techniques. These examples illustrate well the nature of second order
focal boundary value problems and exhibit many of the characteristics of
optics problems in physics. In fact, the focal boundary value problems (1),
(2) and (3), (4) are intimately related to the first and second focal points of
a converging lens.
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