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SUMMARY

1. The Introduction

The authors of this paper present an analysis of
the influence of infectious diseases on predator prey
ecological interactions by presenting scenarios involving
two different cases. The first where the infectives (those
able to become diseased) become susceptible to the
disease again after recovery (SIS), and the second case,
where infectives develop a permanent immunity to the
infection after recovery (SIR).

For the four models considered, a global stability is
achieved in which the natural predator prey equilibrium
is not destroyed. The models presented in this article
differ from previous predator prey models with infectious
diseases because they are based on a predator prey model
with a stable equilibrium and present the possibility of
the disease persisting in the predator population by being
passed on through the feeding cycle.

2. Incidence Forms and the Predator Prey Model

Section 2 presents the incidence forms for the SIS and
SIR models. The total number of prey (N;) for the SIS
model (no immunity after recovery) is given by

N1=5+1; (1)

Where 5 is the number of prey susceptible to infection,
and [; is the number of infected prey. Similarly, predator
population for SIS models is .

N2 = SQ*FIQ (2)

Population in SIR models are presented in the same
fashion except that the recovered population (R;) must
also be accounted for. The equations then become:

Ni=85+0L+R

(3)
(4)

The average number of contacts a preyed upon animal
has with an infected animal per unit time (S) is taken
into account, so that the average number of contacts that
occur between infected animals and susceptible animals
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can be given by:
P15
N
Therefore, the standard incidence,

B15
I
Ny !

(5)

is the number of new cases per unit time due to I,
infectives.

In addition to this, the number of new cases per unit
time can also be modeled by the simple mass action law,

11151 (6)

where 77 is a mass action coeflicient.

When compared to Equation (5) it can be seen that
this model assumes that the contact rate will increase
linearly with respect to the population size as shown by

B1=mMN

[ In human diseases however, the contact rate does not
‘appear to increase linearly with population size, so the
standard incidence is a better approximation. In this
paper however, the authors examine models using both
types of incidence.

The predator-prey model used by the authors is a
modification of the Lotka-Volterra equations with density
dependent, logistic growth of the prey:

M

Ny = 1— =2 N, —aN{ N,
17”1< K1>1a12

3. Predator Prey SIS Model With Standard
Incidence

Section 3 presents a predator prey model with an
SIS infection and standard incidence. Equation (7) is
combined with Equations (1) and (2), and the standard
incidence model, (5). It is then reduced to a set of
four differential equations, that contain solutions for all
positive times in the domain D,

D = {(l1, N\ymla, N2) |0 < I; < N1 < K;,0 < I < No}
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In which K is the prey carrying capacity. Three
epidemiological threshold values are obtained, along with
six equilibrium points within D. Theorem 4 shows the six
solution paths of the system in D, and the six cases are
interpreted into real life biological examples in Corollary
5. After these explanations of the meaning of these
situations, the cases are proven.

4. Predator Prey SIS Model With Mass Action
Incidence

In Section 4, the predator-prey SIS model is repeated
in much the same way, but with the mass action incidence
model, (6), instead of the standard incidence model.
Like Section 3, the model exists in D, and has similar
threshold values and equilibria in the region. The proof
was omitted for this section, due to its similarity to
Section 3.

5. Predator Prey SIR Model With Standard
Incidence

Section b examines the SIR model, in which infected
animals gain immunity after recovery, using Equations
(3) and (4), and the standard incidence model.

The six possible cases for this section require a much
more lengthy proof, involving the Jacobian of the limit
equations and expressing the trace and determinant for
the functions to prove that the equilibria are always
locally asymptotically stable.

6. Predator Prey SIR Model With Mass Action
Incidence

Section 6 analyzes an SIR model identical to that of
the previous section, but as in Section 4, employs the
mass action incidence model instead of the standard
incidence model. The thresholds and some equilibria are
different than the model in Section 5, but the theorem
and proof are identical, except for minor changes, so they
are omitted.

REVIEW

Our group found the paper to be very informative.
The introduction provided accessible information about
previous models, as well as clearly presenting the basic
premises behind the four models in this paper. The four

2

L
models were a good choice, as all were closely related, é -
yet distinct enough to each have their own applications.

The authors did an excellent job of providing citations ¥ ’:1:_

. 4 s e . 2yt ™~
from other’s work, and explaining their additions to past .
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models. The work is significant as it is the first to—= §

consider cases where predators could catch the disease. 4 3;“_7
On the down side however, some of the equations ) Y
could have been explained Dbetter. On several occasions, :u
constants controlling the birth-rate, or death-rate just < O
J

appeared in the equations without even being mentioned, r
let alone explained. The sub-seripted variables and
constants were sometimes confusing to us, but overall
the paper was fairly clear, and showed quality work.
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INTEREST

We found the subject of predator prey models to be
interesting, as they present ways in which communities
of animals interact and their populations grow, shrink,
and settle into equilibria. This particular model added
in the variable of an infectious disease which presents a
new set of equations governing survival. Since epidemics
have been an influential (no pun intended) part of human
history, it is worth studying models such as these. The
applications of these models extend to areas outside of
mathematics such as biology, medicine, sociology, and
public policy.

Qur group chose to review this article, because we
are interested in further investigation of unique predator
prey and population models. As a group project, we
might possibly examine the population models of various
other specialized cases. The population model of a
cannibalistic insect society, in which the food supply is
increased as death occurs, for example. The ideas of
infectious diseases and population growth could also be
applied to a zombie apocalypse, with very interesting
mathematical results.
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